Vinylene Carbonate

[872-36-6]  · C3H2O3  · Vinylene Carbonate  · (MW 86.05)

(reacts as a dienophile1-4 and a dipolarophile;5-11 participates in meta cycloadditions12,13 and other radical reactions14)

Alternate Name: VC; 1,3-dioxol-2-one.

Physical Data: mp 22 °C; bp 165 °C; d 1.36 g cm-3.

Solubility: sol Et2O, benzene.

Form Supplied in: colorless liquid (97%), stabilized with BHT.

Handling, Storage, and Precautions: avoid contact with skin and eyes; do not breathe vapor; cancer-suspect agent. This reagent should only be used in a fume hood.


Since its first synthesis from ethylene carbonate, via a photochemical chlorination-dehydrochlorination sequence (eq 1),1 vinylene carbonate (1) has been widely used in several thermal15 and photochemical reactions.16

Diels-Alder Reactions.

Though reputedly a poor dienophile, VC, being a symmetrical dioxygenated alkene, has been frequently employed as a 2p participant in Diels-Alder reactions.2 A [4 + 2] cycloaddition of isobenzofuran and vinylene carbonate takes place under mild conditions and leads to the formation of a highly oxygenated tetrahydronaphthalene (eq 2).3 A thermal reaction between 2,4-dimethylfuran and VC provides a 7:5 mixture of cycloadducts which have been used in the total synthesis of naturally occurring citreoviral (eq 3).4

1,3-Dipolar Cycloaddition Reactions.

Whereas vinylene carbonate has been reported to be virtually unreactive towards nitrile oxides,5 its reactivity with other 1,3-dipoles presents appealing syntheses of heterocycles.6 The reaction of VC with hydroximic acid hydrochlorides, for instance, results in the formation of isoxazolines in modest yields (eq 4).7

There are reports that the dipolar cycloaddition reactions of nitrones (both cyclic and open-chain) with VC lead to the formation of mixtures of endo- and exo-adducts.8 However, nitrones bearing a chiral center on the carbon substituent of a nitrone undergo endo additions with achiral dipolarophiles.9 This chemistry leads directly to the formation of masked a-hydroxy aldehydes and presents an attractive route for preparing amino sugars from noncarbohydrate precursors. Thus the [3 + 2] reaction of nitrone (2) and VC leads to a 1:1 diastereomeric mixture of products (both endo) which are readily converted into acylated derivatives of epigentosamines (eq 5).10 A thermal dipolar reaction of an azomethine ylide with VC leads to the formation of highly functionalized pyrrolidines (eq 6).11

Meta Cycloadditions.

Arenes react with VC, under photochemical conditions, to provide meta cycloadducts.12 The photoaddition of VC and anisole provides meta adducts in a 65:35 ratio (endo/exo) and some ortho adducts (~30%) are also observed. The reaction with benzonitrile, however, provides a regioisomeric mix of only endo-meta adducts.13

1. Newman, M. S.; Addor, R. W. JACS 1953, 75, 1263; 1955, 77, 3789.
2. (a) Harrison, E. A.; Ammon, H. L. JOC 1980, 45, 943. (b) Scholz, K. H.; Heine, J. G.; Hartmann, W. LA 1977, 2027. (c) Posner, G. H.; Nelson, T. D. T 1990, 46, 4573. (d) Anderson, W. K.; Milowsky, A. S. JOC 1985, 50, 5423. (e) Lambert, J. B.; Mark, H. W. JACS 1978, 100, 2501. (f) Shestakova, T. G.; Zaichikova, L. S.; Zyk, N. V.; Zefirov, N. S. ZOR 1982, 18, 554. (g) Zefirov, N. S.; Kirpichenok, M. A.; Shestakova, T. G. ZOR 1983, 19, 246. (h) Boger, D. L.; Mullican, M. D. JOC 1984, 49, 4033. (i) Subramanyam, R.; Bartlett, P. D.; Iglesias, G. Y. M.; Watson, W. H.; Galloy, J. JOC 1982, 47, 4491. (j) Mackenzie, K.; Proctor, G.; Woodnutt, D. J. T 1987, 43, 5981.
3. D'Andrea, S. V.; Freeman, J. P.; Szmuszkovicz, J. JOC 1990, 55, 4356.
4. Shizuri, Y.; Nishiyama, S.; Shigemori, H.; Yamamura, S, CC 1985, 292.
5. Larsen, K. E.; Torssell, K. B. G. T 1984, 40, 2985.
6. (a) DeShong, P.; Li, W.; Kennington, J. W.; Ammon, H. L. JOC 1991, 56, 1364. (b) Dicken, C. M.; DeShong, P. JOC 1982, 47, 2047.
7. Caldirola, P.; De Amici, M.; De Micheli, C. H 1985, 23, 2479.
8. Burdisso, M.; Gandolfi, R.; Grunanger, P. JOC 1990, 55, 3427.
9. DeShong, P.; Leginus, J. M. JACS 1983, 105, 1686.
10. DeShong, P.; Dicken, C. M.; Leginus, J. M.; Whittle, R. R. JACS 1984, 106, 5598.
11. DeShong, P.; Kell, D. A.; Sidler, D. R. JOC 1985, 50, 2309.
12. (a) Mattay, J.; Runsink, J.; Rumbach, T.; Ly, C.; Gersdorf, J. JACS 1985, 107, 2557. (b) Mattay, J.; Runsink, J.; Gersdorf, J.; Rumbach, T.; Ly, C. HCA 1986, 69, 442. (c) Heine, H.-G.; Hartmann, W. AG(E) 1975, 14, 698.
13. Osselton, E. M.; Eyken, C. P.; Jans, A. W. H.; Cornelisse, J. TL 1985, 26, 1577.
14. (a) Araki, Y.; Endo, T.; Tanji, M.; Nagasawa, J.; Ishido, Y. TL 1988, 29, 351. (b) Feldman, K. S.; Romanelli, A. L.; Ruckle, R. E.; Miller, R. F. JACS 1988, 110, 3300.
15. (a) Bassignani, L.; Biancini, B.; Brandt, A.; Caciagli, V.; Bianchi, G. E.; Re, L.; Rossodivita, A.; Zappelli, P. CB 1979, 112, 148. (b) Rao, J. M.; Mallikarjuna, S. TL 1979, 283.
16. Araki, Y.; Nagasawa, J.; Ishido, Y. JCS(P1) 1981, 12.

Humayun S. Ateeq & Fazila Iqbal

H. E. J. Research Institute of Chemistry, Karachi, Pakistan

Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.