2-Trimethylsilyloxy-1,3-butadiene

[38053-91-7]  · C7H14OSi  · 2-Trimethylsilyloxy-1,3-butadiene  · (MW 142.30)

(easily prepared1 reactive diene for Diels-Alder reactions2-40 and other cycloadditions;41-44 reactive silyl enol ether for aldol, Michael reactions, and electrophilic additions45-46)

Physical Data: bp 50-55 °C/50 mmHg; d 0.811 g cm-3.

Solubility: sol most standard organic solvents.

Form Supplied in: liquid available commercially.

Preparative Methods: can be prepared easily from methyl vinyl ketone.1

Handling, Storage, and Precautions: is a flammable liquid and is moisture sensitive.

Diels-Alder Reactions.

Although commercially available, 2-trimethylsilyloxy-1,3-butadiene (1) can be easily prepared by silylation of Methyl Vinyl Ketone.1 It has been often used as a reactive diene in Diels-Alder reactions. In nearly all cases with a strongly activated dienophile, the trimethylsilyloxy group ends up 1,4 to the activating group in the adduct. Several representative examples are shown in Table 1.1-14 The initial Diels-Alder adduct is a silyl enol ether and as such can be converted into several different products by simple silyl enol ether chemistry, e.g. the adduct (3) from the reaction of (1) with Dimethyl Fumarate (2) (eq 1) can be hydrolyzed to the cyclohexanone (4) in either acid or base, converted into the a-bromo or a-hydroxy ketone (5) or (6) on treatment with Bromine or N-Bromosuccinimide and m-Chloroperbenzoic Acid, respectively, and finally via a Mukaiyama-type aldol (PhCHO/Titanium(IV) Chloride) to the enone (7).1b,2

Alkynic dienophiles also work well, e.g. ethyl propiolate and (1) produce the expected cyclohexadiene ester in 77% yield.15 In addition to simple dienophiles, a number of allenic dienophiles have also been utilized, as shown in Table 2.16-19 Cyclic dienophiles, enones, lactams, etc., are often reacted with (1) to give fused bicyclic systems, but generally the yields are only in the 25-45% range,20-24 e.g. reaction of (1) with (13) gives (14) in 27% yield (eq 2).20b

More reactive dienophiles, e.g. b-nitroenones,21 enediones,22 1,2-disulfonylethylene,23 etc., give higher yields, as do Lewis acids,24 e.g. Zinc Bromide (eq 3),24a and the use of high pressure.25 Stereofacial differentiation of (1) with cyclic enones,26 lactones,27 and lactams28 is generally excellent, e.g. (1) reacts with (17a,b) to give (18a,b) with high selectivity in good yield (eq 4).26 Reaction of (1) with quinones has often been used29 in syntheses of anthraquinones and their derivatives, e.g. to prepare the A ring of the anthracyclines.29b-g Double Michael reactions30 have been used quite often instead of Diels-Alder reactions to provide the same products, often in higher yields. The preparation of the azabicyclic ketone (20) is an interesting example of a tandem Diels-Alder reaction-aldol-type condensation (eq 5).31 An example of an aldol reaction followed by a Diels-Alder is also known.32

Finally, there is one example of (1) acting as the dienophile, namely in the Diels-Alder reaction with a-nitrosostyrene, where 6-vinyl-6-silyloxy-4,5-dihydrooxazine is formed in 65% yield.33

Heterodienophiles.

Many heterodienophiles have been reacted with (1).34-37 Mesoxalate, glyoxalate, and hexafluoroacetone all give the 4-pyranone silyl ether derivatives in fair yield.34 The corresponding thiomesoxalate affords the 3-thiopyranone-4,4-diester in good yield,35a,b as does an a-oxosulfine,35c while alkyl thioformates yield the 4-thiopyranones.35d By far the largest group of heterodienophiles used are imine derivatives.36-37 Activated imines, e.g. diacyl imines,36 afford the 4-piperidones, while aryl-fused dihydropyridines, e.g. (21), furnish fused 4-piperidones, e.g. (22), in good yield when reacted with (1) in the presence of a Lewis acid (eq 6).37

Finally, several imines give products of an aldol-type condensation rather than Diels-Alder reaction when reacted with (1) in the presence of Lewis acids.38 Phosphaalkenes react with (1) to give ultimately the aromatic phosphinine39 and dimethyl azodicarboxylate affords the expected [4 + 2] adduct in 83% yield.40

[2 + 2] and Other Cycloadditions, Carbene Additions.

Several [2 + 2] cyclizations of (1) with various alkenes are known.41 Quite often these vinyl cyclobutyl silyl ethers can be thermally rearranged to the normal Diels-Alder product,16,19,41 e.g. (23) giving (25) via (24) (eq 7).41a These [2 + 2] adducts can also be transformed via palladium catalysis into a-methylenecyclopentanones41d,e in good yield, e.g. (26) gives (28) via (27) (eq 8).41d Metal complexes of 1,3,5-Cycloheptatriene react with (1) to give a novel [6 + 4] cycloaddition, e.g. (29) giving (30) (eq 9).42

Even [3 + 2] cycloadditions occur when cyclopropyl ketones are treated with (1) under photolytic or Lewis acid conditions to produce cyclopentane systems.43 Cyclopropanations of (1) are well known, in all cases adding to the more electron-rich silyloxy alkene.1a,44 The vinylcyclopropanol silyl ethers can be converted into a number of different products, e.g. cyclopentanones, 2-methylcyclobutanones, vinyl ketones, and b-alkoxy ketones (eq 10). One clever use of (1) in synthesis is the tandem [2 + 2]-Cope process which converts (34) into (35) (eq 11).44i

Aldol Condensations and Electrophilic Additions.

2-Trimethylsilyloxybutadiene (1) can act as the enolate of methyl vinyl ketone (MVK) towards reactive carbon atoms in an aldol- like process to give the products of overall addition of MVK to reactive centers.45 Various strong electrophiles have been added to (1), e.g. bromine, NBS, m-CPBA, alkylating agents, and acylating agents, usually reacting at the carbon of the silyl enol ether to give a-bromo, a-silyloxy, or a-alkyl ketones in good yields.46 With acylating agents, however, the O-acylated products are obtained.46e

Related Reagents.

1-Acetoxy-1,3-butadiene; 2-Methoxy-1,3-butadiene; 1-Methoxy-3-trimethylsilyloxy-1,3-butadiene; 1-Trimethylsilyloxy-1,3-butadiene.


1. (a) Girard, C.; Amice, P.; Barnier, J. P.; Conia, J. M. TL 1974, 3329. (b) Jung, M. E.; McCombs, C. A. TL 1976, 2935. (c) Jung, M. E.; McCombs, C. A. OSC 1988, 6, 445. (d) Cazeau, P.; Moulines, F.; LaPorte, O.; Duboudin, F. JOM 1980, 201, C9. (e) Cazeau, P.; Duboudin, F.; Moulines, F.; Babot, O.; Dunoguès, J. T 1987, 43, 2089. (f) Cazeau, P.; Frainnet, E. BSF(2) 1972, 1658.
2. Jung, M. E.; McCombs, C. A.; Takeda, Y.; Pan, Y.-G. JACS 1981, 103, 6677.
3. Yin, T.-K.; Lee, J. G.; Borden, W. T. JOC 1985, 50, 531.
4. Baldwin, J. E.; Broline, B. M. JOC 1982, 47, 1385.
5. Rigby, J. H.; Kotnis, A. S. TL 1987, 28, 4943.
6. Danishefsky, S. J.; Prisbylla, M. P.; Hiner, S. JACS 1978, 100, 2918.
7. Kraus, G. A.; Thurston, J.; Thomas, P. J.; Jacobson, R. A.; Su, Y. TL 1988, 29, 1879.
8. Maruoka, K.; Saito, S.; Yamamoto, H. JACS 1992, 114, 1089.
9. Rao, Y. K.; Nagarajan, M. S 1984, 757.
10. De Lucchi, O.; Fabbri, D.; Lucchini, V. T 1992, 48, 1485.
11. Taguchi, T.; Hosoda, A.; Tomizawa, G.; Kawara, A.; Masuo, T.; Suda, Y.; Nakajima, M.; Kobayashi, Y. CPB 1987, 35, 909.
12. Ojima, I.; Yatabe, M.; Fuchikami, T. JOC 1982, 47, 2051.
13. Bell, V. L.; Holmes, A. B.; Hsu, S.-Y.; Mock, G. A.; Raphael, R. A. JCS(P1) 1986, 1502.
14. Ko, B.-S.; Oritani, T.; Yamashita, K. ABC 1990, 54, 2199.
15. Ackland, D. A.; Pinhey, J. T. JSC(P1) 1987, 2689.
16. Jung, M. E.; Node, M.; Pfluger, R.; Lyster, M. A.; Lowe, J. A., III JOC 1982, 47, 1150.
17. Kozikowski, A. P.; Schmiesing, R. SC 1978, 8, 363.
18. Hayakawa, K.; Nishiyama, H.; Kanematsu, K. JOC 1985, 50, 512.
19. Jung, M. E.; Lowe, J. A., III; Lyster, M. A.; Node, M.; Pfluger, R.; Brown, R. W. T 1984, 40, 4751.
20. (a) Liu, H.-J.; Ngooi, T. K. SC 1982, 12, 715. (b) Liu, H.-J.; Ngooi, T. K.; Browne, E. N. C. CJC 1988, 66, 3143. (c) Kraus, G. A.; Gottschalk, P. JOC 1984, 49, 1153. (d) Ghosh, S.; Saha, S. TL 1985, 26, 5325. (e) Ghosh, S.; Saha Roy, S.; Saha, G. T 1988, 44, 6235. (f) Sano, T.; Toda, J.; Kashiwaba, N.; Ohshima, T.; Tsuda, Y. CPB 1987, 35, 479. (g) Rigby, J. H.; Ogbu, C. O. TL 1990, 31, 3385. (h) Seitz, G.; v. Gemmern, R. S 1987, 953. (i) Wulff, W. D.; Yang, D. C. JACS 1984, 106, 7565.
21. Corey, E. J.; Estreicher, H. TL 1981, 22, 603.
22. Danishefsky, S.; Kahn, M. TL 1981, 22, 489.
23. De Lucchi, O.; Fabbri, D.; Cossu, S.; Valle, G. JOC 1991, 56, 1888.
24. (a) de Oliveira Imbroisi, D.; Simpkins, N. S. JCS(P1) 1991, 1815. (b) de Oliveira Imbroisi, D.; Simpkins, N. S. TL 1989, 30, 4309. (c) Fujiwara, T.; Ohsaka, T.; Inoue, T.; Takeda, T. TL 1988, 29, 6283.
25. (a) Laugraud, S.; Guingant, A.; d'Angelo, J. TL 1989, 30, 83. (b) Branchadell, V.; Sodupe, M.; Ortuño, R. M.; Oliva, A.; Gomez-Pardo, D.; Guingant, A.; d'Angelo, J. JOC 1991, 56, 4135.
26. (a) Asaoka, M.; Nishimura, K.; Takei, H. BCJ 1990, 63, 407. (b) Haaksma, A. A.; Jansen, B. J. M.; de Groot, A. T 1992, 48, 3121.
27. de Jong, J. C.; van Bolhuis, F.; Feringa, B. L. TA 1991, 2, 1247.
28. (a) Koot, W.-J.; Hiemstra, H.; Speckamp, W. N. JOC 1992, 57, 1059. (b) Baldwin, S. W.; Greenspan, P.; Alaimo, C.; McPhail, A. T. TL 1991, 32, 5877.
29. (a) Boisvert, L.; Brassard, P. JOC 1988, 53, 4052. (b) Tamura, Y.; Wada, A.; Sasho, M.; Fukunaga, K.; Maeda, H.; Kita, Y. JOC 1982, 47, 4376. (c) Tamura, Y.; Sasho, M.; Akai, S.; Wada, A.; Kita, Y. T 1984, 40, 4539. (d) Carretero, J. C.; Cuevas, J. C.; Echavarren, A.; Fariña, F.; Prados, P. JCR(S) 1984, 6. (e) Cameron, D. W.; Feutrill, G. I.; Griffiths, P. G.; Merrett, B. K. TL 1986, 27, 2421. (f) Preston, P. N.; Winwick, T.; Morley, J. O. JCS(P1) 1985, 39. (g) Laugraud, S.; Guingant, A.; d'Angelo, J. TL 1992, 33, 1289.
30. (a) Mukaiyama, T.; Sagawa, Y.; Kobayashi, S. CL 1986, 1821. (b) Inokuchi, T.; Kurokawa, Y.; Kusumoto, M.; Tanigawa, S.; Takagishi, S.; Torii, S. BCJ 1989, 62, 3739. (c) see also ref 20c.
31. Yang, T.-K.; Hung, S.-M.; Lee, D.-S.; Hong, A.-W.; Cheng, C.-C. TL 1989, 30, 4973.
32. Simpkins, N. S. T 1991, 47, 323.
33. Hippeli, C.; Reissig, H.-U. S 1987, 77.
34. (a) Bélanger, J.; Landry, N. L.; Paré, J. R. J.; Jankowski, K. JOC 1982, 47, 3649. (b) Kirmse, W.; Mrotzeck, U. CB 1988, 121, 485. (c) Ishihara, T.; Shinjo, H.; Inoue, Y.; Ando, T. JFC 1983, 22, 1.
35. (a) Larsen, S. D. JACS 1988, 110, 5932. (b) Kirby, G. W.; McGregor, W. M. JCS(P1) 1990, 3175. (c) Rewunkel, J. G. M.; Zwanenberg, B. RTC 1990, 101, 190. (d) Herczegh, P.; Zsély, M.; Bognár, R. TL 1986, 27, 1509.
36. (a) Jung, M. E.; Shishido, K.; Light, L.; Davis, L. TL 1981, 22, 4607. (b) Hamley, P.; Holmes, A. B.; Kee, A.; Ladduwahetty, T.; Smith, D. F. SL 1991, 29.
37. (a) Vacca, J. P. TL 1985, 26, 1277. (b) Ryan, K. M.; Reamer, R. A.; Volante, R. P.; Shinkai, I. TL 1987, 28, 2103. (c) Huff, J. R.; Baldwin, J. J.; deSolms, S. J.; Guare, J. P.; Hunt, C. A.; Randall, W. C.; Sanders, W. S.; Smith, S. J.; Vacca, J. P.; Zrada, M. M. JMC 1988, 31, 641.
38. (a) Ueda, Y.; Maynard, S. C. TL 1985, 26, 6309. (b) Schrader, T.; Steglich, W. S 1990, 1153. (c) Hartmann, P.; Obrecht, J.-P. SC 1988, 18, 553.
39. (a) Märkl, G.; Kallmünzer, A. TL 1989, 30, 5245. (b) Markovskiii, L. N.; Romanenko, V. D.; Kachkovskaya, L. S. JGU 1985, 55, 2488.
40. Vartanyan, R. S.; Gyul'budagyan, A.; Khanamiryan, A. Kh.; Mkrtumyan, E. N.; Kazaryan, Zh. V. KGS 1991, 783.
41. (a) Sano, T.; Toda, J.; Ohshima, T.; Tsuda, Y. CPB 1992, 40, 873. (b) Sano, T.; Toda, J.; Horiguchi, Y.; Imafuku, K.; Tsuda, Y. H 1981, 16, 1463. (c) Sano, T.; Toda, J.; Tsuda, Y.; Yamaguchi, K.; Sakai, S.-I. CPB 1984, 32, 3255. (d) Demuth, M.; Pandey, B.; Wietfeld, B.; Said, H.; Viader, J. HCA 1988, 71, 1392. (e) de Almeida-Barbosa, L.-C.; Mann, J. JCS(P1) 1992, 337. (f) Dolbier, W. R., Jr.; Piedrahita, C.; Houk, K. N.; Strozier, R. W.; Gandour, R. W. TL 1978, 2231. (g) Hassner, A.; Naisdorf, S. TL 1986, 27, 6389.
42. (a) Rigby, J. H.; Ateeq, H. S. JACS 1990, 112, 6442. (b) Rigby, J. H.; Ateeq, H. S.; Charles, N. R.; Cuisiat, S. V.; Ferguson, M. D.; Henshilwood, J. A.; Krueger, A. C.; Ogbu, C. O.; Short, K. M.; Heeg, M. J. JACS 1993, 115, 1382.
43. (a) Demuth, M.; Wietfeld, B.; Pandey, B.; Schaffner, K. AG(E) 1985, 24, 763. (b) Komatsu, M.; Suehiro, I.; Horiguchi, Y.; Kuwajima, I. SL 1991, 771.
44. (a) Conia, J. M. JCR(S) 1978, 182. (b) Girard, C.; Conia, J. M. TL 1974, 3333. (c) Olofson, R. A.; Lotts, K. D.; Barber, G. N. TL 1976, 3779. (d) Kunkel, E.; Reichelt, I.; Reissig, H.-U. LA 1984, 512. (e) Zschiesche, R.; Reissig, H.-U. LA 1987, 387. (f) Kuehne, M.; Pitner, J. B. JOC 1989, 54, 4553. (g) Shi, G.; Xu, Y. JOC 1990, 55, 3383. (h) de Meijere, A.; Schulz, T.-J.; Kostikov, R. R.; Graupner, F.; Murr, T.; Beifeldt, T. S 1991, 547. (i) Cantrell, W. R., Jr.; Davies, H. M. L. JOC 1991, 56, 723.
45. (a) Natsume, M.; Muratake, H. TL 1979, 3477. (b) Conde-Frieboes, K.; Hoppe, D. SL 1990, 99.
46. (a) Lüönd, R. M.; Cuomo, J.; Neier, R. W. JOC 1992, 57, 5005. (b) Herman, T.; Carlson, R. TL 1989, 30, 3657. (c) Pennanen, S. I. SC 1985, 15, 865, 1063. (d) Takeda, K.; Ayabe, A.; Kawashima, H.; Harigaya, Y. TL 1992, 33, 951. (e) Olofson, R. A.; Cuomo, J. TL 1980, 21, 819.

Michael E. Jung

University of California, Los Angeles, CA, USA



Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.