Sodium Tetracarbonylcobaltate

NaCo(CO)4
(NaCo(CO)4)

[14878-28-5]  · C4CoNaO4  · Sodium Tetracarbonylcobaltate  · (MW 193.96) (HCo(CO)4)

[16842-03-8]  · C4HCoO4  · Tetracarbonylhydridocobalt  · (MW 171.98) (KCo(CO)4)

[14878-26-3]  · C4CoKO4  · Potassium Tetracarbonylcobaltate  · (MW 210.07) (LiCo(CO)4)

[15616-75-8]  · C4CoLiO4  · Lithium Tetracarbonylcobaltate  · (MW 177.91) (TlCo(CO)4)

[38991-21-8]  · C4CoO4Tl  · Thallium Tetracarbonylcobaltate  · (MW 375.35) ([CuCo(CO)4]4)

[94024-70-1]  · C16Co4Cu4O16  · Tetracopper Tetrakis(tetracarbonylcobaltate)  · (MW 938.08)

(catalyst for carboxylation reactions of alkyl,46 benzyl,49 aryl,55 and vinyl halides;55 reagent for single and double carbonylation of benzyl halides17a,b and alkene oxides;65 mediates butenolide synthesis from alkynes and acid chlorides;73 mediates alkyl halide hydrogenolysis,77 coupling of gem-dihalides to give tetrasubstituted alkenes,5b formation of symmetrical ketones,80 formation of alkylcobalt tetracarbonyl complexes and alkylidynetricobalt nonacarbonyl complexes;82,84 the conjugate acid, HCo(CO)4, is the true hydroformylation catalyst;31 HCo(CO)4 is also a reagent for hydrogenation of alkenes conjugated to aldehydes,108a ketones,111a or arenes111a and for alkene isomerization;93b,c HCo(CO)4 is an effective acid catalyst for a variety of organic transformations; tetracarbonylcobaltate with a range of counter ions mediates an array of organic transformations)

Physical Data: white solid. No other documented literature values. The Co(CO)4- anion has a distorted tetrahedral structure.1

Solubility: sol heptane, hexane, benzene, toluene, dichloromethane, THF, ether; alcohols are the most effective solvents for reactions of the title compound.

Form Supplied in: off-white powder; commercially available.

Analysis of Reagent Purity: IR;2 59Co NQR;3 Raman.2f,g

Preparative Methods: conveniently prepared in a variety of ways.4 Reacting Octacarbonyldicobalt with Sodium Amalgam (1%) in THF,5 ether,6 hexane,7 or benzene8 under N2 or CO gives NaCo(CO)4 in up to 94% yield.8 High yields can also be achieved using alternative reducing agents with Co2(CO)8 under mild conditions. Sodium Hydride (98% yield),9 Sodium Naphthalenide (90% yield),10 Sodium-Potassium Alloy (product isolated as the Ph3Sn derivative in 96% yield),11 and Sodium-Ammonia (95% yield)12 have all been used to prepare the required anion. Octacarbonyl(mercury)dicobalt (Hg[Co(CO)4]2) (see also Octacarbonyl(zinc)dicobalt) has also been efficiently used as the Co(CO)4 source with either Na(Hg)7 or aqueous Sodium Sulfide.13 When required under stringently dry and deoxygenated conditions, NaCo(CO)4 is most conveniently and rapidly formed from Co2(CO)8 with Sodium Hydroxide in dry THF under N2.14 Furthermore, this technique does not require the preformation or handling of Na(Hg) or Hg[Co(CO)4]2. Less widely used methods involving electrochemical15 or photochemical techniques16 have also been reported. In addition to the techniques already described, NaCo(CO)4 is commonly prepared in situ either from Co2(CO)8 under basic phase-transfer conditions17 or under reductive conditions from simple cobalt salts and CO (e.g. CoCl2/NaBH4,18 CoBr2/Na naphthalenide,19 and Co(acac)2/Na naphthalenide20).

The potassium, lithium, and thallium analogs, KCo(CO)413,14 (IR2i,j), LiCo(CO)414 (white crystalline solid, IR2h-j), and TlCo(CO)421-23 (recrystallized from H2O,21 volatile, air-sensitive,22 bright yellow crystalline solid, mp 120-130 °C (dec),21 IR,21 MS,21 X-ray structure23), are also available by similar techniques, as well as by alternative routes using KH,24 K- and L-Selectride,25 C8K,26 and Li wire in THF with Co2(CO)8.27 It is also worth noting that an efficient aqueous, low-pressure synthesis of the potassium species has been reported from simple cobalt halides, KOH, and KCN in the presence of CO.28 This procedure is more convenient than a similar earlier synthesis from Co(NO3)2.29 In addition to the species already mentioned, the copper analog, CuCo(CO)4, exists as an orange-red crystalline tetramer (X-ray structure30) and is readily synthesized from NaCo(CO)4 and CuCl.30

Tetracarbonylhydridocobalt,31 HCo(CO)4, (hydrogen tetracarbonylcobaltate, cobalt tetracarbonyl hydride, cobalt hydrocarbonyl; white to light yellow solid or liquid; mp -33 °C;28a,29,32 bp 10 °C (estimate),33 bp 47 °C;34 decomposes thermally to Co2(CO)8 and H2;29,32,35 intolerable odor;29 sol hexane, toluene, ethanol; sparingly sol in H2O; IR,36 1H NMR,1h,37 59Co NQR,3 MS;38 X-ray structure,39 central Co surrounded tetrahedrally by four CO groups with H lying in one face of the tetrahedron and bonded to three CO groups39,40) is the conjugate acid of the title compound and will also be discussed here. The metal hydride is not readily available commercially but is prepared by a variety of techniques with and without the requirement for high gas pressures. Methods where CO and H2 pressure are not required include reaction of salts containing the Co(CO)4- anion (usually the readily prepared pyridinium salt) with protic acids40a or the similar reaction of acid with the disproportionation product of Co2(CO)8 with DMF under 1 atm of CO.41 A further simple route to HCo(CO)4 is by reaction of preformed KCo(CO)4 with HCl.28a,29,32 In a much less common route, reaction of a range of other transition metal hydrides with Co2(CO)8 yields the cobalt hydride.36l Routes to HCo(CO)4 from common cobalt salts are available but require high pressures (approx. 200 atm) of CO with, in most cases, H2.33,40a,42 Similarly, Co2(CO)8 can be converted to HCo(CO)4 under CO/H2 pressure at elevated temperatures.43 An electrochemical route from Co(acac)2 at milder CO/H2 pressures has also been reported.44 Yields in the higher pressure reactions are generally lower than the atmospheric pressure reactions and offer no obvious advantage. General purification techniques for HCo(CO)4 are given by Moore et al.45

Handling, Storage, and Precautions: the title compound decomposes readily in air. Can be handled and stored as a solid or solution in the organic solvents quoted above under inert gas (argon or nitrogen). The conjugate acid, HCo(CO)4, is an unpleasantly odorous gas at room temperature with a toxicity predicted as being equivalent to that of Ni(CO)4.29 This material is usually prepared as required.

Carboxylation and Related Reactions.

Carboxylation of halogen compounds with Co2(CO)8, which is considered to involve -Co(CO)4, is well known and is discussed elsewhere (see Octacarbonyldicobalt). Additionally, the reaction of alkyl halides, sulfates, or sulfonates and carbon monoxide (atmospheric pressure) in alcohol solution in the presence of base with a catalytic amount of NaCo(CO)4 gives alkoxycarbonylation in good yields (eqs 1 and 2).46 The initially formed alkylcobalt tetracarbonyl undergoes carbon monoxide addition to form the acylcobalt tetracarbonyl and finally gives the ester by alcoholysis.47 When the reactions are carried out at 50 °C or below, only the expected ester, where the halogen has been directly replaced by the methoxycarbonyl group, is obtained. Therefore, at low temperatures, the mixture of isomers formed by the analogous Co2(CO)8 carboxylation is avoided. Further studies have shown that isomerization of acylcobalt carbonyls is possible and is dependent on solvent, atmosphere, and the acyl group structure.28b,48

Benzyl halides also undergo carboxylation reactions under both homogeneous (eq 3)49 and phase-transfer conditions (PTC) (eq 4).17a,b,50 Anion-exchange resins have also been used effectively, in a similar way to PTC, to heterogenize the cobaltate anion.51 Additionally, the tetracarbonylcobaltate anion has been prepared in situ from simple cobalt salts and CO under reductive conditions, and reacted with benzyl halides to give the products of both carboxylation and carbonylation/cyclization in good yields (eqs 5 and 6).18-20,52

Following the initially reported reactions, PTC have been used extensively in reactions involving the tetracarbonylcobaltate anion.17c,53 Under such conditions the Co anion is considered to be more nucleophilic than under more conventional techniques50b and, in carboxylation reactions, the PTC allow the product and catalyst to be easily separated in the aqueous and organic phase respectively.54 Furthermore, in most cases when PTC are used, the (CO)4Co- is generated in situ from Co2(CO)8 and base under a CO atmosphere. The efficiency of the phase-transfer techniques is illustrated by the carboxylation of aryl and vinyl halides (eqs 7 and 8).55 Subsequently, the carboxylation of vinyl, aryl, and heteroaryl halides, using a variety of techniques for the generation and reaction of the tetracarbonylcobaltate anion, have been reported. These include the in situ preparation of activated alkyltetracarbonylcobalt complexes,20,56 the similarly prepared Co/complex reducing agent/CO (CoCRACO) system,9,57 and the more routine use of KCo(CO)4.58

The products of double CO insertion can also predominate in the two-phase system. This is illustrated by the reaction of (1-bromoethyl)benzene (eq 9)17a,b in t-pentyl alcohol (cf. Alper and Des Abbayes50b). The distribution of single and double carbonylation products is dependent on solvent,17a,b,50b aromatic substitution,59 and, remarkably, the stirring speed of the reaction.59 Furthermore, when aromatic hydrocarbons replace alcoholic solvents under PTC, the products of benzyl coupling predominate (eq 10).17a,b

In a further variation to the phase-transfer techniques already presented, aryl methyl ketones result when the reactions are carried out in the presence of an excess of Iodomethane (eq 11).60 When the cobaltate anion is generated in a homogeneous mixture, carboxylic acids or a-keto acids, the products of double carbonylation, result.61 Again, the product distribution is both solvent and base dependent.61,62 When the tetracarbonylcobaltate anion is generated in situ from CoCl2, the a-keto acids again predominate, even when an excess of MeI is used (eq 12).63

In an extension of the photostimulated phase-transfer studies, it has been shown that benzolactones and lactams can be prepared (eqs 13 and 14)58 using techniques which compare favorably with the equivalent Pd methods.64 Again, activated alkyltetracarbonylcobalt complexes, prepared in situ have been used to prepare similar products.56

In a similar fashion to Co2(CO)8 (see Octacarbonyldicobalt), despite low yields being common, regioselective carboxylation of epoxides can be achieved using NaCo(CO)4.65 The yields are improved in a number of specific examples (e.g. eq 15)66 or, alternatively, by either employing KCo(CO)467 or by the in situ formation of the cobaltate anion from Co2(CO)8 and K2CO3 under a CO atmosphere.68 Again, under PTC, double CO insertion products can result. To date, this type of reaction is only known for styrene oxides in the presence of methyl iodide (eq 16).69 Alternatively, under similar conditions, styrene sulfides simply give the products of single CO insertion.70 It should also be noted here that, under certain conditions, NaCo(CO)4 (and Co2(CO)8) can deoxygenate epoxides to give the alkenic products with good stereoselectivity.71

Alkoxycarbonylation of allyl acetates with NaCo(CO)4, in combination with Pd, has also been demonstrated. Here, the cobaltate anion attacks the initially formed (p-allyl)palladium species and, following CO insertion and methanolysis, gives the corresponding ester (eq 17).72

In studies which follow on from the original Co-catalyzed formation of butenolides from acylcobalt tetracarbonyls and alkynes,47a,73 acid chlorides have been used with stoichiometric quantities of NaCo(CO)4 to form the acylcobalt species in situ which, in turn, react with disubstituted alkynes to give 3,4,5-trisubstituted 3-buten-2-olides.74 Unsymmetrically substituted alkynes where the substituents are sterically similar give rise to mixtures of regioisomers. In contrast, 2,2-dimethyl-3-pentyne undergoes reaction with propionyl chloride and NaCo(CO)4 to give predominantly one regioisomer (eq 18). Under these conditions, terminal alkynes do not react cleanly. However, in a similar transformation this is overcome by the use of mild PTC.75 Furthermore, butadienolides are also available using the title compound when acid chlorides which contain a leaving group in the a-position (e.g. chloroacetyl chloride) (eq 19)76 are employed.

Other NaCo(CO)4-Mediated Reactions.

In contrast to the carboxylation reactions, which occur when the cobaltate anion is either formed or simply used under basic conditions, hydrodehalogenation can be achieved in the presence of acid (eq 20) (anion formed in situ).77 The yields of the hydrogenated products are often poor. Additionally, the reaction rate depends on the structure of the alkyl halide, and the hydrogenolysis of the C-X bond is often accompanied by aldehyde formation.

Coupling of gem-dihalides has also been achieved using the title compound to produce tetrasubstituted alkenes in good yield (eq 21).5b Octacarbonyldicobalt also mediates this reaction in comparable yield, whilst the related metal-cobalt carbonyl species Hg[Co(CO)4]2 (see Octacarbonyl(zinc)dicobalt) is effective when UV irradiation is employed.5b In a related reaction, vicinal dihalides are dehalogenated using NaCo(CO)4 (eq 22) or Co2(CO)8.5b

In a transformation which is complementary to the synthesis of symmetrical diaryl ketones using Hg[Co(CO)4]2,78 dialkyl ketones can be formed by the reaction of NaCo(CO)4 (formed in situ19) with a dialkyl-BI species79 followed by basic oxidative workup.80 This procedure is illustrated for the formation of di-n-octyl ketone (eq 23).

In an isolated example, NaCo(CO)4 (in combination with Co(NO)2Cl) has been shown to catalyze the dimerization of butadiene to afford 4-vinylcyclohexene (eq 24).81 On the other hand, the alternative sodium-metal species, Na[Fe(CO)3NO], with various metal halides, mediates this transformation more efficiently in up to 100% yield under similar reaction conditions.81

Alkylcobalt tetracarbonyl complexes, RCo(CO)4, are readily formed from the tetracarbonylcobaltate anion and organic halides or tosylates. These species readily insert CO under mild conditions to give the corresponding acylcobalt complexes, RCOCo(CO)4. The acylcobalt species react readily with 1,3-dienes to give (p-allyl)cobalt complexes by insertion of the diene into the Co-acyl bond. In turn, when these complexes are treated with base, acyl dienes result.82 Phase-transfer techniques have also been used in this area.75 These transformations are illustrated by the last step of a one-pot reaction sequence in which the acyl(p-allyl)cobalt complex (1) reacts with a stabilized carbanion to give 1,4-acylation/alkylation products from 1,3-dienes (eq 25).83

Alkylidynetricobalt Nonacarbonyl Complexes.4b,5a,84

Trinuclear compounds of the general structure RCH2C[Co3(CO)9] are formed directly from Co2(CO)8 with terminal alkynes at 85 °C85 or by reaction of the terminal alkyne complex (RC&tbond;CH)[Co2(CO)6] with H2SO4 in MeOH.86 More general syntheses of trinuclear alkylidyne complexes of general structure RCCo3(CO)9 are available by treating trihalomethane derivatives of type RCX3 with Co2(CO)8 or Co4(CO)12.4b,87 The significance of the tetracarbonylcobaltate anion in the latter synthetic strategy has been supported by the preparation of MeCCo3(CO)9 from NaCo(CO)4 and MeCCl3 in refluxing THF.4b Furthermore, fluorinated tricobalt complexes of the type RC[Co3(CO)9], where R = F, CF3, CF3CF2, and CHF2, have been prepared by the reaction of fluoroalkyltetracarbonylcobalt compounds with NaCo(CO)4 (e.g. eq 26).88 The fluoroalkyl complexes are themselves conveniently prepared by treatment of the corresponding fluorinated acid chloride with NaCo(CO)4.5a,27,89

Three other routes to complexes of the general structure RC[Co3(CO)9] are worth noting. In the first, NaCo(CO)4 reacts with N-Dichloromethylene-N,N-dimethyliminium Chloride to give the complex where R = NMe2 in good yield.90 In the second example, TlCo(CO)4 is reacted with CCl4 in benzene to give the compound where R = Cl.91 Lastly, PTC have been employed with Co2(CO)8 to generate the anion in situ and prepared a number of complexes from trihalomethane derivatives.92 Alkylidynetricobalt nonacarbonyl complexes are deep violet/purple crystalline compounds which are soluble in organic solvents (insoluble in H2O) and appear to be some of the most air-stable of all cobalt carbonyl derivatives.4b The chemistry of these compounds is reviewed by Seyferth.84a

Reactions of the Conjugate Acid, Tetracarbonylhydrocobalt, HCo(CO)4.

In the hydroformylation reaction of alkenes with Co2(CO)8, CO, and H2, it has been demonstrated that the true catalyst is HCo(CO)4.31,41a,43,93 Hydroformylation reactions catalyzed by cobalt are covered elsewhere (see Octacarbonyldicobalt). Nonetheless, by using the title compound (and its deuterium equivalent), it has been shown that this transformation is a cis process.94 Further studies have also shown that, with catalytic hydroformylation, the reaction rate is increased by the addition of organic bases95 (e.g. pyridine, quinoline, or Et3N) or oxygenated compounds (e.g. ketones or alcohols).96 Under stoichiometric conditions using HCo(CO)4, the reaction rate and yield are increased and the isomerization of excess alkene is greatly reduced by the addition of benzonitrile.97 Alternative nucleophiles have been shown to be less effective in promoting hydroformylation. Additionally, product ratios have been optimized using modified catalysts; for example, phosphine ligands enhance straight-chain products.98 Hydrogenation reactions are also possible when HCo(CO)4 is reacted with alkenes (see below). However, it should be noted that mixtures of hydrogenation and hydroformylation products can result, with product ratios being dependent on both reaction atmosphere composition and pressure,99 as well as on temperature and catalyst activator.100

As with Co2(CO)8 and NaCo(CO)4, the hydrocobalt species is also known to mediate the hydroformylation of alkene oxides to give b-hydroxy aldehydes.96,101 Furthermore, these reactions are accelerated by addition of small amounts of inorganic salts, the best of those used being Copper(I) Oxide.102 In related examples, HCo(CO)4 has been shown to react with aziridines with CO insertion to give b-aminoacyl complexes.103 More recently, the alkoxycarbonylation of vinylsilanes has been significantly improved. When compared to previous examples,104 the hydroesterification reactions can be performed with Co catalysis and display high a-stereoselectivity105 (cf. the use of Pd catalysis for b-selectivity). Again, stoichiometric quantities of HCo(CO)4 are active in this process. In one final carbonylation related example, the rarely used Co-mediated homologation of alcohols (see Octacarbonyldicobalt), the active species is believed to be HCo(CO)4/-Co(CO)4.106

When catalytic hydroformylation is performed at elevated temperatures (approx. 185 °C), the aldehydes are believed to be reduced under the reaction conditions and alcohols are isolated as the principal products.107 On the other hand, when reactions are performed using HCo(CO)4 under stoichiometric conditions, aldehydes are only reduced very slowly and in low overall yield.108 Indeed, in only a limited number of cases have stoichiometric reductions of carbonyl groups been successfully performed using mononuclear Co complexes109 (e.g. formaldehyde in eq 27).110

In contrast to the reduction of carbonyl groups, double bonds conjugated to aldehydes,108a,111 ketones,111a,112 or arenes111a,113 are readily reduced under mild stoichiometric conditions (cf. less mild catalytic conditions).114 Two illustrative examples are shown in eqs 28 and 29.108a,113a Hydrogenation using HCo(CO)431,93d,115 has been shown, like the similar hydroformylation, to be a cis process113h,i and proceeds under H2, N2, or CO atmospheres. Reaction rates under CO, which retards the breakdown of HCo(CO)4, are faster.108,111a,113a With only one recorded exception,116 a,b-unsaturated esters undergo hydroformylation in preference to hydrogenation.

Cobalt-catalyzed dihydroformylation of conjugated butadienes is not successful, especially when compared to the substantial yields which can be achieved with Rh catalysts.117 Normally with HCo(CO)4 as the reactive species, butadienes are hydrogenated to butenes which then undergo hydroformylation or alkoxycarbonylation to give C5 products.115b,118 Reactions of conjugated dialkenes with HCo(CO)4 can also readily give p-methallyl complexes.119 Furthermore, it has been demonstrated that HCo(CO)4 readily isomerizes alkenes to give more highly substituted double bonds.93b,c,111b,115b,120 Tetrasubstituted allenes give mixtures of both isomerized and hydrogenated products when treated with HCo(CO)4.121

At elevated temperatures (180-220 °C), HCo(CO)4 catalyzes the hydrogenolysis of diaryl glycols to diarylethanes with high selectivity.93a,122 Additionally, in contrast to Co2(CO)8 which in reaction with acetylene gives fumaric, acrylic, and succinic acid esters under hydroformylation conditions,123 HCo(CO)4 simply gives the acetylenehexacarbonyldicobalt complex under similar conditions.124

Despite being often termed as a cobalt hydride, HCo(CO)4 is a stronger acid than MeSO3H and 2,4,6-trinitrophenol and all other transition metal hydrides which have been examined, and is comparable in acid strength with HCl and HNO333,36a,k,45,125 (pKa 8.3 in MeCN,45 bond dissociation energy 280 kJ mol-1 126). It is also mildly reducing in character.127 In terms of organic synthesis, the acidic Co hydride has been utilized to mediate a number of acid-catalyzed reactions including the pinacol rearrangement to pinacolone,128 the formation and hydrolysis of acetals,129 the homologation of alcohols,130 and the reactions of vinyl ethers,131 as well as the course of the reaction of HCo(CO)4 itself with cyclohexene oxide.132 Finally, in an isolated series of examples, HCo(CO)4 has been shown to mediate the cyclization and coupling of aryl imines with vinyl ethers.133 Electron-releasing substituents favor formation of the quinoline products (e.g. eq 30) but, in other examples, mixtures of products often result. When THF is used as solvent, only the quinoline products result, albeit with a drop in yield.

Tetracarbonylcobaltate with Alternative Counter Ions.

When the tetracarbonylcobaltate moiety is combined with counter ions other than Na+ (Li+, K+, Tl+) or H, a considerable variety of reactivity has been observed. In the simplest example, where the counter ion is the pyridinium ion, C5H5NH+, higher catalytic activities in reactions involving CO, e.g. hydroformylation and hydrocarboxylation, are observed.134 When readily formed135 ytterbium/cobalt clusters, such as Cp2YbCo(CO)4, are used under hydroformylation conditions, compared to Co2(CO)8 a considerably higher conversion of starting alkene into aldehydes results.136 Similar processes using lutetium137 and uranium138 have also been reported.

With other counter ions, reactions which have not been reported with the simple cobaltate systems have been observed. In the first example, the results can be directly compared with the NaCo(CO)4 carboxylation of epoxides. When cobalt hexaalcohol counter ions are used as the reagents, ketones are formed in good yields.139 The methanol (eq 31) and isopropyl alcohol complexes have been used to give comparable yields of products. A similar reaction using Sn[Co(CO)4]4 under high CO pressure has also been reported.140

Another reaction which can readily be compared with those of other Co species, in particular CpCo(CO)2, Co2(CO)8, and Hg[Co(CO)4]2, is the cyclotrimerization of alkynes using [Ph3PC5H4Co(CO)2]+ [Co(CO)4]-.141 This complex is readily formed by reaction of Co2(CO)8 and triphenylphosphinocyclopentadienide (Cp--PPh3+) and is reacted in refluxing THF to give good yields of aromatic products (e.g. eq 32).

Novel silyl carbocyclization reactions with double CO incorporation have been observed142 using (t-BuNC)4RhCo(CO)4143 as catalyst. When dipropargylallylamines are reacted with this catalyst, the main product (2) is accompanied by a small amount of a single CO incorporation product (3) (eq 33). When Rh4(CO)12 is used as the catalyst (at ambient CO pressure), ketone (3) is the sole product (81%). Cyclopentenone formation can also be achieved using the same Rh/Co catalyst (eq 34).142 Alternative Rh and Rh/Co catalysts have also been reported for this latter cyclization. Mixed Rh/Co complexes also catalyze silylcarbonylation (the Si version of hydroformylation) and hydrosilylation of alkynes,144 as well as the synthesis of 2-arylethanols from benzyl halides.145

When the tetracarbonylcobaltate anion was being studied as a potential desulfurization agent, it was found that tetraarylethylenes are formed as the principal organic products from reaction of (Ph3P)2N+ -Co(CO)4 with thioketones (eq 35).146 The same study showed that higher yields in this reaction can be achieved by using Co2(CO)8 and that desulfurization to give hydrocarbons can be realized by using the HFe(CO)4- anion.

The structurally simple ammonium tetracarbonylcobalt species, NH4Co(CO)4, is formed by reaction of HCo(CO)4 with ammonia and reacts with aromatic aldehydes to give aromatic imines.147 Finally, it is also worth noting that the tin tetracobaltate species, Sn[Co(CO)4]4, is an active catalyst for the hydrolysis of carbonates148 (as is Co2(CO)8) and for hydroformylation and acetalization reactions.149

Related Reagents.

Octacarbonyldicobalt; Octacarbonyl(zinc)dicobalt.


1. Hanlan, L. A.; Huber, H.; Kündig, E. P.; McGarvey, B. R.; Ozin, G. A. JACS 1975, 97, 7054.
2. (a) Edgell, W. F.; Lyford, J., IV; Barbetta, A.; Jose, C. I. JACS 1971, 93, 6403. (b) Edgell, W. F.; Barbetta, A. JACS 1974, 96, 415. (c) Edgell, W. F.; Yang, M. T.; Koizumi, N. JACS 1965, 87, 2563. (d) Bor, G.; Dietter, U. K.; Noack, K. CC 1976, 914. (e) Samvelyan, S. Kh.; Lokshin, B. V.; Aleksanyan, V. T. J. Mol. Spectrosc. 1973, 48, 566 (CA 1974, 80, 21 078y). (f) Edgell, W. F.; Lyford, J., IV JCP 1970, 52, 4329. (g) Edgell, W. F.; Lyford, J., IV JACS 1971, 93, 6407. (h) Braterman, P. S.; Leslie, A. E. JOM 1981, 214, C45. (i) Edgell, W. F.; Lyford, J., IV; Wright, R.; Risen, W., Jr.; Watts, A. JACS 1970, 92, 2240. (j) Edgell, W. F.; Watts, A. T.; Lyford, J., IV; Risen, W. M., Jr. JACS 1966, 88, 1815. (k) Edgell, W. F. In Ions and Ion Pairs in Organic Reactions; Szwarc, M., Ed.; Interscience: New York, 1977; Vol. 1, p 153.
3. Lucken, E. A. C.; Noack, K.; Williams, D. F. JCS(A) 1967, 148.
4. (a) Ellis, J. E. JOM 1975, 86, 1. (b) King, R. B. Adv. Organomet. Chem. 1964, 2, 157.
5. (a) King, R. B. In Organometallic Syntheses; Eisch, J. J.; King, R. B., Eds.; Academic: New York, 1965; Vol. 1, p 152. (b) Seyferth, D.; Millar, M. D. JOM 1972, 38, 373. (c) King, R. B. J. Inorg. Nucl. Chem. 1963, 25, 1296.
6. Hieber, W.; Vohler, O.; Braun, G. ZN(B) 1958, 13B, 192.
7. Dighe, S. V.; Orchin, M. IC 1962, 1, 965.
8. Wender, I.; Sternberg, H. W.; Orchin, M. JACS 1952, 74, 1216.
9. Brunet, J.-J.; Sidot, C.; Caubère, P. JOM 1980, 204, 229.
10. Gompper, R.; Bartmann, E. LA 1980, 229.
11. Ellis, J. E.; Flom, E. A. JOM 1975, 99, 263.
12. (a) Behrens, H.; Weber, R. Z. Anorg. Allg. Chem. 1955, 281, 190. (b) Behrens, H. ZN(B) 1952, 7B, 321.
13. Hieber, W.; Fischer, E. O.; Böckly, E. Z. Anorg. Allg. Chem. 1952, 269, 308.
14. Edgell, W. F.; Lyford, J., IV IC 1970, 9, 1932.
15. (a) Grobe, J.; Schneider, B. H. ZN(B) 1981, 36B, 1. (b) Grobe, J.; Schneider, B. H. ZN(B) 1981, 36B, 8. (c) Grobe, J.; Kaufmann, J.; Kober, F. ZN(B) 1973, 28B, 691.
16. Kudo, K.; Shibata, T.; Kashimura, T.; Mori, S.; Sugita, N. CL 1987, 577.
17. (a) Francalanci, F.; Foà, M. JOM 1982, 232, 59. (b) Francalanci, F.; Gardano, A.; Abis, L.; Fiorani, T.; Foà, M. JOM 1983, 243, 87. (c) Alper, H. Adv. Organomet. Chem. 1981, 19, 183. (d) Alper, H.; Damude, L. C. OM 1982, 1, 579. (e) Gibson, D. H.; Ahmed, F. U.; Phillips, K. R. JOM 1981, 206, C17.
18. (a) Satyanarayana, N.; Periasamy, M. TL 1987, 28, 2633. (b) Satyanarayana, N.; Periasamy, M. JOM 1987, 333, C33.
19. Devasagayaraj, A.; Rao, S. A.; Periasamy, M. JOM 1991, 403, 387.
20. Nindakova, L. O.; Shmidt, F. K.; Reshetnikova, O. M.; Dmitrieva, T. V. JOU 1991, 27, 2016; ZOR 1991, 27, 2276.
21. Burlitch, J. M.; Theyson, T. W. JCS(D) 1974, 828.
22. Hieber, W.; Teller, U. Z. Anorg. Allg. Chem. 1942, 249, 43.
23. (a) Schussler, D. P.; Robinson, W. R.; Edgell, W. F. IC 1974, 13, 153. (b) Pedersen, S. E.; Robinson, W. R.; Schussler, D. P. JOM 1972, 43, C44.
24. Inkrott, K.; Goetze, R.; Shore, S. G. JOM 1978, 154, 337.
25. (a) Gladysz, J. A.; Williams, G. M.; Tam, W.; Johnson, D. L. JOM 1977, 140, C1. (b) Gladysz, J. A.; Williams, G. M.; Tam, W.; Johnson, D. L.; Parker, D. W.; Selover, J. C. IC 1979, 18, 553.
26. Ungurenasu, C.; Palie, M. CC 1975, 388.
27. McClellan, W. R. JACS 1961, 83, 1598.
28. (a) Clark, R. J.; Whiddon, S. E.; Serfass, R. E. JOM 1968, 11, 637. (b) Takegami, Y.; Yokokawa, C.; Watanabe, Y.; Okuda, Y. BCJ 1964, 37, 181.
29. Gilmont, P.; Blanchard, A. A. Inorg. Synth. 1946, 2, 238.
30. (a) Klüfers, P. AG(E) 1984, 23, 307. (b) Klüfers, P. AG(E) 1985, 24, 70.
31. Orchin, M. ACR 1981, 14, 259.
32. (a) Blanchard, A. A.; Gilmont, P. JACS 1940, 62, 1192. (b) Coleman, G. W.; Blanchard, A. A. JACS 1936, 58, 2160.
33. Reppe, W.; Schuster, C.; Keller, H.; Kröper, H.; Klein, Th.; Schlenk, H.; Reindl, E.; Schuhknecht, W. LA 1953, 582, 116.
34. Roth, J. A.; Orchin, M. JOM 1980, 187, 103.
35. Hieber, W.; Schulten, H. Z. Anorg. Allg. Chem. 1937, 232, 29.
36. (a) Sternberg, H. W.; Wender, I.; Friedel, R. A.; Orchin, M. JACS 1953, 75, 2717. (b) Edgell, W. F.; Magee, C.; Gallup, G. JACS 1956, 78, 4185. (c) Edgell, W. F.; Gallup, G. JACS 1956, 78, 4188. (d) Edgell, W. F.; Asato, G.; Wilson, W.; Angell, C. JACS 1959, 81, 2022. (e) Edgell, W. F.; Huff, J.; Thomas, J.; Lehman, H.; Angell, C.; Asato, G. JACS 1960, 82, 1254. (f) Edgell, W. F.; Summitt, R. JACS 1961, 83, 1772. (g) Edgell, W. F.; Gallup, G. JACS 1955, 77, 5762. (h) Friedel, R. A.; Wender, I.; Shufler, S. L.; Sternberg, H. W. JACS 1955, 77, 3951. (i) White, J. W.; Wright, C. J. JCS(D) 1970, 970. (j) Fischer, R. D. CB 1960, 93, 165. (k) Vidal, J. L.; Walker, W. E. IC 1981, 20, 249. (l) Kovács, I.; Sisak, A.; Ungváry, F.; Markó, L. OM 1989, 8, 1873. (m) Bor, G. Magy. Asvanyolaj Foldgaz Kiserl. Intez. Kozlem. 1965, 6, 45 (CA 1967, 67, 37 868y). (n) Bor, G.; Markó, L. Magy. Asvanyolaj Foldgaz Kiserl. Intez. Kozlem. 1962, 3, 216 (CA 1962, 57, 12 086g).
37. (a) Farrar, T. C.; Brinckman, F. E.; Coyle, T. D.; Davison, A.; Faller, J. W. IC 1967, 6, 161. (b) Sheldrick, G. M. CC 1967, 751. (c) Cotton, F. A.; Wilkinson, G. CI(L) 1956, 1305. (d) Piper, T. S.; Wilkinson, G. J. Inorg. Nucl. Chem. 1956, 3, 104. (e) Lohr, L. L., Jr.; Lipscomb, W. N. IC 1964, 3, 22. (f) Stevens, R. M.; Kern, C. W.; Lipscomb, W. N. JCP 1962, 37, 279.
38. (a) Johnson, B. F. G.; Lewis, J.; Robinson, P. W. JCS(A) 1970, 1684. (b) Saalfeld, F. E.; McDowell, M. V.; Gondal, S. K.; MacDiarmid, A. G. JACS 1968, 90, 3684.
39. Natta, G.; Corradini, P. Atti Accad. Nazl. Lincei, Rend., Classe Sci. Fis., Mat. e nat. 1953, 15, 248 (CA 1954, 48, 13 328d).
40. (a) Sternberg, H. W.; Wender, I.; Orchin, M. Inorg. Synth. 1957, 5, 192. (b) Cable, J. W.; Sheline, R. K. CRV 1956, 56, 1. (c) Ewens, R. V. G.; Lister, M. W. Trans. Faraday Soc. 1939, 35, 681.
41. (a) Kirch, L.; Orchin, M. JACS 1958, 80, 4428. (b) Kirch, L.; Orchin, M. FES 1967, 1, 154.
42. (a) Markó L. Magy. Kém. Foly. 1955, 61, 339 (CA 1958, 52, 12 640a). (b) Sisak, A.; Ungváry, F.; Markó, L. Acta Chim. Hung. 1985, 119, 115 (CA 1986, 104, 188 622x).
43. Orchin, M.; Kirch, L.; Goldfarb, I. JACS 1956, 78, 5450.
44. Grobe, J.; Zimmermann, H. ZN(B) 1984, 39B, 962.
45. Moore, E. J.; Sullivan, J. M.; Norton, J. R. JACS 1986, 108, 2257.
46. (a) Heck, R. F.; Breslow, D. S. JACS 1963, 85, 2779. (b) Heck, R. F.; Breslow, D. S. FES 1967, 1, 1058.
47. (a) Heck, R. F. Adv. Organomet. Chem. 1966, 4, 243. (b) Heck, R. F. Organotransition Metal Chemistry, A Mechanistic Approach; Academic: New York, 1974. (c) Heck, R. F. In Organic Synthesis via Metal Carbonyls; Wender, I.; Pino, P., Eds.; Interscience: New York, 1968; Vol. 1, p 379. (d) Mullen, A. In New Syntheses with Carbon Monoxide; Falbe, J., Ed.; Springer: Berlin, 1980; p 243. (e) Tkatchenko, I. In Comprehensive Organometallic Chemistry, Wilkinson, G.; Stone, F. G. A.; Abel. E. W., Eds.; Pergamon: Oxford, 1982; Vol. 8, p 101.
48. (a) Takegami, Y.; Yokokawa, C.; Watanabe, Y.; Masada, H.; Okuda, Y. BCJ 1965, 38, 787. (b) Takegami, Y.; Watanabe, Y.; Masada, H.; Okuda, Y.; Kubo, K.; Yokokawa, C. BCJ 1966, 39, 1495.
49. Francalanci, F.; Gardano, A.; Foà, M. JOM 1985, 282, 277.
50. (a) Cassar, L.; Foà, M. JOM 1977, 134, C15. (b) Alper, H.; Des Abbayes, H. JOM 1977, 134, C11. (c) Shen, X.; Zhang, S.; Cai, E. Gansu Shida Xuebao, Ziran Kexueban 1981, 6, (CA 1983, 98, 34 350c).
51. Foà, M.; Francalanci, F.; Gardano, A.; Cainelli, G.; Umani-Ronchi, A. JOM 1983, 248, 225.
52. Braterman, P. S.; Walker, B. S.; Robertson, T. H. CC 1977, 651.
53. Des Abbayes, H. Isr. J. Chem. 1985, 26, 249.
54. Des Abbayes, H.; Buloup, A. TL 1980, 21, 4343.
55. Brunet, J.-J.; Sidot, C.; Caubère, P. TL 1981, 22, 1013.
56. Foà, M.; Francalanci, F.; Bencini, E.; Gardano, A. JOM 1985, 285, 293.
57. (a) Brunet, J. J.; Sidot, C.; Loubinoux, B.; Caubère, P. JOC 1979, 44, 2199. (b) Caubère, P. AG(E) 1983, 22, 599.
58. Brunet, J.-J.; Sidot, C.; Caubère, P. JOC 1983, 48, 1166.
59. Des Abbayes, H.; Buloup, A. CC 1978, 1090.
60. Miura, M.; Akase. F.; Nomura, M. CC 1986, 241.
61. Miura, M.; Akase. F.; Shinohara, M.; Nomura, M. JCS(P1) 1987, 1021.
62. Miura, M.; Akase. F.; Nomura, M. JOC 1987, 52, 2623.
63. (a) Itoh, K.; Miura, M.; Nomura, M. BCJ 1988, 61, 4151. (b) Francalanci, F.; Bencini, E.; Gardano, A.; Vincenti, M.; Foà, M. JOM 1986, 301, C27. (c) Foà, M.; Francalanci, F. J. Mol. Catal. 1987, 41, 89. (d) Miura, M.; Okuro. K.; Itoh, K.; Nomura, M. J. Mol. Catal. 1990, 59, 11.
64. (a) Cowell, A.; Stille, J. K. JACS 1980, 102, 4193. (b) Mori, M.; Chiba, K.; Ban, Y. JOC 1978, 43, 1684. (c) Schoenberg, A.; Heck, R. F. JOC 1974, 39, 3327.
65. (a) Heck, R. F. In Organic Synthesis via Metal Carbonyls; Wender, I.; Pino, P., Eds.; Interscience: New York, 1968; Vol. 1, pp 284-388. (b) Heck, R. F. JACS 1963, 85, 1460.
66. Rosenthal, A.; Whyte, J. N. C. CJC 1968, 46, 2239.
67. (a) Takegami, Y.; Watanabe, Y.; Masada, H.; Kanaya, I. BCJ 1967, 40, 1456. (b) Kawabata, Y.; Tanaka, M.; Hayashi, T.; Ogata, I. Nippon Kagaku Kaishi 1979, 635 (CA 1980, 92, 6320a).
68. Dalcanale, E.; Foà, M. S 1986, 492.
69. Alper, H.; Arzoumanian, H.; Petrignani, J.-F.; Saldana-Maldonado, M. CC 1985, 340.
70. Calet, S.; Alper, H.; Petrignani, J.-F.; Arzoumanian, H. OM 1987, 6, 1625.
71. Dowd, P.; Kang, K. CC 1974, 384.
72. Hegedus, L. S.; Tamura, R. OM 1982, 1, 1188.
73. Heck, R. F. JACS 1964, 86, 2819.
74. Krafft, M. E.; Pankowski, J. TL 1990, 31, 5139.
75. Alper, H.; Currie, J. K.; Des Abbayes, H. CC 1978, 311.
76. Krafft, M. E.; Pankowski, J. SL 1991, 865.
77. Ungváry, F.; Markó, L. JOM 1980, 193, 379.
78. Seyferth, D.; Spohn, R. J. JACS 1969, 91, 6192.
79. Reddy, Ch. K.; Periasamy, M. TL 1989, 30, 5663.
80. Devasagayaraj, A.; Rao, M. L. N.; Periasamy, M. JOM 1991, 421, 147.
81. Tkatchenko, I. JOM 1977, 124, C39.
82. (a) Heck, R. F. JACS 1963, 85, 3381. (b) Heck, R. F. JACS 1963, 85, 3383. (c) Heck, R. F. JACS 1963, 85, 3387. (d) Heck, R. F. In Organic Synthesis via Metal Carbonyls; Wender, I.; Pino, P., Eds.; Interscience: New York, 1968; Vol. 1, pp 388-397.
83. Hegedus, L. S.; Inoue, Y. JACS 1982, 104, 4917.
84. (a) Seyferth, D. Adv. Organomet. Chem. 1976, 14, 97. (b) Penfold, B. R.; Robinson, B. H. ACR 1973, 6, 73. (c) Palyi, G.; Piacenti, F.; Markó, L. ICA 1970, 4, 109.
85. Dickson, R. S.; Yawney, D. B. W. AJC 1969, 22, 533.
86. Markby, R.; Wender, I.; Friedel, R. A.; Cotton, F. A.; Sternberg, H. W. JACS 1958, 80, 6529.
87. (a) Dent, W. T.; Duncanson, L. A.; Guy, R. G.; Reed, H. W. B.; Shaw, B. L. Proc. Chem. Soc. 1961, 169. (b) Bor, G.; Markó, L.; Markó, B. CB 1962, 95, 333. (c) Bor, G.; Markó, B.; Markó, L. Acta Chim. Acad. Sci. Hung. 1961, 27, 395 (CA 1961, 55, 23 184g). (d) Ercoli, R.; Santambrogio, E.; Casagrande, G. T. Chim. Ind. (Milan) 1962, 44, 1344 (CA 1963, 58, 5244g).
88. Booth, B. L.; Haszeldine, R. N.; Inglis. T. JCS(D) 1975, 1449.
89. (a) Willford, J. B.; Forster, A.; Stone, F. G. A. JCS 1965, 6519. (b) Hieber, W.; Beck, W.; Lindner, E. ZN(B) 1961, 16B, 229.
90. Hartshorn, A. J.; Lappert, M. F.; Turner, K. CC 1975, 929.
91. Booth, B. L.; Casey, G. C.; Haszeldine, R. N. JCS(D) 1975, 1850.
92. Alper, H.; Des Abbayes, H.; Des Roches, D. JOM 1976, 121, C31.
93. (a) Wender, I.; Sternberg, H. W.; Orchin, M. JACS 1953, 75, 3041. (b) Heck, R. F.; Breslow, D. S. JACS 1961, 83, 4023. (c) Karapinka, G. L.; Orchin, M. JOC 1961, 26, 4187. (d) Orchin, M. ANY 1983, 415, 129. (e) Haymore, B. L.; Van Asselt, A.; Beck, G. R. ANY 1983, 415, 159. (f) Cornils, B.; Foerster, I. CZ 1973, 97, 374.
94. (a) Fichteman, W. E.; Orchin, M. JOC 1969, 34, 2790. (b) Nalesnik, T. E.; Fish, J. G.; Horgan, S. W.; Orchin, M. JOC 1981, 46, 1987. (c) Rosenthal, A.; Abson, D. CJC 1964, 42, 1811. (d) Rosenthal, A.; Koch, H. J. CJC 1965, 43, 1375.
95. (a) Iwanaga, R. BCJ 1962, 35, 865. (b) Iwanaga, R. BCJ 1962, 35, 869. (c) Uchida, H.; Matsuda, A. BCJ 1963, 36, 1351.
96. Takegami, Y.; Yokokawa, C.; Watanabe, Y. BCJ 1964, 37, 935.
97. Roos, L.; Orchin, M. JOC 1966, 31, 3015.
98. (a) Slaugh, L. H.; Mullineaux, R. D. JOM 1968, 13, 469. (b) Tucci, R. Ind. Eng. Chem., Prod. Res. Dev. 1968, 7, 32.
99. (a) Major, A.; Horváth, I. T.; Pino, P. J. Mol. Catal. 1988, 45, 275. (b) Pino, P.; Major, A.; Spindler, F.; Tannenbaum, R.; Bor, G.; Horváth, I. T. JOM 1991, 417, 65.
100. Botteghi, C.; Branca, M.; Marchetti, M.; Saba, A. JOM 1978, 161, 197.
101. (a) Takegami, Y.; Yokokawa, C.; Watanabe, Y.; Masada, H. BCJ 1964, 37, 672. (b) Kreisz, J.; Ungváry, F.; Sisak, A.; Markó, L. JOM 1991, 417, 89. (c) Falbe, J. Carbon Monoxide in Organic Synthesis; Springer: Berlin, 1970; pp 58-59, 117. (d) Piacenti, F.; Bianchi, M. In Organic Synthesis via Metal Carbonyls; Wender, I.; Pino, P., Eds.; Interscience: New York, 1977; Vol. 2, p 20.
102. Takegami, Y.; Yokokawa, C.; Watanabe, Y.; Masada, H. BCJ 1965, 38, 1649.
103. Danzer, W.; Höfer, R.; Menzel, H.; Olgemöller, B.; Beck, W. ZN(B) 1984, 39B, 167.
104. Doyle, M. M.; Jackson, W. R.; Perlmutter, P. TL 1989, 30, 233.
105. (a) Takeuchi, R.; Ishii, N.; Sugiura, M.; Sato, N. JOC 1992, 57, 4189. (b) Takeuchi, R.; Ishii, N.; Sato, N. CC 1991, 1247.
106. Pretzer, W. R.; Kobylinski, T. P. ANY 1980, 333, 58.
107. Wender, I.; Levine, R.; Orchin, M. JACS 1950, 72, 4375.
108. (a) Goetz, R. W.; Orchin, M. JOC 1962, 27, 3698. (b) Parker, V. D. ACS 1981, B35, 387.
109. (a) Rathke, J. W.; Feder, H. M. JACS 1978, 100, 3623. (b) Feder, H. M.; Rathke, J. W. ANY 1980, 333, 45. (c) Davydov, V. N. Chem. Tech. (Berlin) 1959, 11, 431 (CA 1961, 55, 7337e).
110. Sisak, A.; Sámpár-Szerencsés, E.; Galamb, V.; Németh, L.; Ungváry, F.; Pályi, G. OM 1989, 8, 1096.
111. (a) Goetz, R. W.; Orchin, M. JACS 1963, 85, 2782. (b) Ungváry, F.; Sisak, A.; Markó, L. JOM 1980, 188, 373.
112. Roth, J. A.; Grega, K.; Orchin, M. JOM 1988, 342, 129.
113. (a) Roth, J. A.; Orchin, M. JOM 1979, 182, 299. (b) Nalesnik, T. E.; Orchin, M. JOM 1980, 199, 265. (c) Roth, J. A.; Wiseman, P. JOM 1981, 217, 231. (d) Roth, J. A.; Wiseman, P.; Ruszala, L. JOM 1983, 240, 271. (e) Nalesnik, T. E.; Orchin, M. OM 1982, 1, 222. (f) Nalesnik, T. E.; Freudenberger, J. H.; Orchin, M. JOM 1981, 221, 193. (g) Taylor, P. D.; Orchin, M. JOC 1972, 37, 3913. (h) Fichteman, W. E.; Orchin, M. JOC 1968, 33, 1281. (i) Nalesnik, T. E.; Freudenberger, J. H.; Orchin, M. JOM 1982, 236, 95. (j) Nalesnik, T. E.; Freudenberger, J. H.; Orchin, M. J. Mol. Catal. 1982, 16, 43. (k) Ungváry, F.; Markó, L. JOM 1983, 249, 411. (l) Ungváry, F.; Markó, L. OM 1982, 1, 1120.
114. (a) Orchin, M. Adv. Catal. 1953, 5, 385. (b) Adkins, H.; Krsek, G. JACS 1949, 71, 3051.
115. (a) Orchin, M. Catal. Rev. 1984, 26, 59. (b) Ungváry, F.; Markó, L. Acta Chim. (Budapest) 1969, 62, 425 (CA 1970, 72, 42 618z).
116. Taylor, P.; Orchin, M. JOM 1971, 26, 389.
117. Fell, B.; Rupilius, W. TL 1969, 2721.
118. (a) Rupilius, W.; Orchin, M. JOC 1971, 36, 3604. (b) Imyanitov, N. S.; Rudkovskii, D. M. ZOR 1966, 2, 231. (c) Milstein, D.; Huckaby, J. L. JACS 1982, 104, 6150. (d) Matsuda, A. BCJ 1973, 46, 524.
119. (a) Jonassen, H. B.; Stearns, R. I.; Kenttämaa, J. JACS 1958, 80, 2586. (b) Moore, D. W.; Jonassen, H. B.; Joyner, T. B.; Bertrand, J. A. CI(L) 1960, 1304. (c) Aldridge, C. L.; Jonassen, H. B.; Pulkkinen, E. CI(L) 1960, 374. (d) Heck, R. F.; Breslow, D. S. JACS 1960, 82, 750. (e) Heck, R. F.; Breslow, D. S. JACS 1961, 83, 1097. (f) Husebye, S.; Jonassen, H. B.; Moore, D. W. ACS 1964, 18, 1581. (g) Bertrand, J. A.; Jonassen, H. B.; Moore, D. W. IC 1963, 2, 601. (h) McClellan, R. W.; Hoehn, H. H.; Cripps, H. N.; Muetterties, E. L.; Howk, B. H. JACS 1961, 83, 1601.
120. (a) Ungváry, F.; Markó, L. OM 1984, 3, 1466. (b) Fell, B.; Krings, P.; Asinger, F. CB 1966, 99, 3688. (c) Taylor, P.; Orchin, M. JACS 1971, 93, 6504. (d) McCabe, M. V.; Terapane, J. F., Jr.; Orchin, M. Ind. Eng. Chem., Prod. Res. Dev. 1975, 14, 281 (CA 1975, 83, 192 276c). (e) Laï, R.; Ucciani, E.; Naudet, M.; Laï, M. O. BSF 1969, 793. (f) Roos, L.; Orchin, M. JACS 1965, 87, 5502. (g) Goetz, R. W.; Orchin, M. JACS 1963, 85, 1549. (h) Takegami, Y.; Yokokawa, C.; Watanabe, Y.; Masada, H.; Okuda, Y. BCJ 1964, 37, 1190.
121. Garst, J. F.; Bockman, T. M.; Batlaw, R. JACS 1986, 108, 1689.
122. Forster, D.; Schaefer, G. F. J. Mol. Catal. 1991, 64, 283.
123. Natta, G.; Pino, P. Chim. Ind. (Milan) 1952, 34, 449.
124. Iwashita, Y.; Tamura, F.; Wakamatsu, H. BCJ 1970, 43, 1520.
125. (a) Hieber, W.; Hübel, W. Z. Elektrochem. 1953, 57, 235. (b) Hieber, W.; Hübel, W. ZN(B) 1952, 7B, 322.
126. (a) Tilset, M.; Parker, V. D. JACS 1990, 112, 2843. (b) Tilset, M.; Parker, V. D. JACS 1989, 111, 6711.
127. Hieber, W.; Hübel, W. ZN(B) 1952, 7B, 323.
128. Wender, I.; Metlin, S.; Orchin, M. JACS 1951, 73, 5704.
129. Fleming, B. I.; Bolker, H. I. CJC 1976, 54, 685.
130. (a) Wender, I.; Levine, R.; Orchin, M. JACS 1949, 71, 4160. (b) Wender, I.; Friedel, R. A.; Orchin, M. Science (Washington, D.C.) 1951, 113, 206. (c) Wender, I.; Greenfield, H.; Metlin, S.; Orchin, M. JACS 1952, 74, 4079.
131. Freudenberger, J. H.; Matsui, Y.; Orchin, M. CL 1982, 1811.
132. Roos, L.; Goetz, R. W.; Orchin, M. JOC 1965, 30, 3023.
133. Joh, T.; Hagihara, N. Nippon Kagaku Zasshi 1970, 91, 383 (CA 1970, 73, 45 295y).
134. (a) Tarasov, B. P.; Zhirkov, A. A.; Vigranenko, Yu. T.; Rybakov, V. A. ZOB 1990, 60, 2089 (CA 1991, 114, 50 264g). (b) Gvozdovskii, G. N.; Gavrilova, V. M.; Rybakov, V. A.; Blanshtein, I. B. Zh. Prikl. Khim. 1987, 60, 592 (CA 1987, 106, 198 101g).
135. (a) Beletskaya, I. P.; Suleimanov, G. Z.; Shifrina, R. R.; Mekhdiev, R. Yu.; Agdamskii, T. A.; Khandozhko, V. N.; Kolobova, N. E. JOM 1986, 299, 239. (b) Beletskaya, I. P.; Voskoboinikov, A. Z.; Magomedov, G. K. I. DOK 1989, 306, 108.
136. Beletskaya, I. P.; Magomedov, G. K.-I.; Voskoboinikov, A. Z. JOM 1990, 385, 289.
137. Beletskaya, I. P.; Voskoboinikov, A. Z.; Magomedov, G. K. Metalloorg. Khim. 1989, 2, 814 (CA 1990, 112, 76 342q).
138. Beletskaya, I. P.; Voskoboinikov, A. Z.; Solov'eva, G. V.; Leonov, M. R.; Magomedov, G. K. Metalloorg. Khim. 1989, 2, 820 (CA 1990, 112, 138 579h).
139. Eisenmann, J. L. JOC 1962, 27, 2706.
140. Cabrera, A.; Mathé, F.; Castanet, Y.; Mortreux, A.; Petit, F. J. Mol. Catal. 1991, 64, L11.
141. Holy, N. L.; Baenziger, N. C.; Flynn, R. M. AG(E) 1978, 17, 686.
142. Ojima, I.; Donovan, R. J.; Shay, W. R. JACS 1992, 114, 6580.
143. Ojima, I.; Clos, N.; Donovan, R. J.; Ingallina, P. OM 1991, 10, 3211.
144. Ojima, I.; Ingallina, P.; Donovan, R. J.; Clos, N. OM 1991, 10, 38.
145. Ishino, M.; Deguchi, T. J. Mol. Catal. 1989, 52, L17.
146. Alper, H.; Park, H.-N. JOC 1977, 42, 3522.
147. Rhee, I.; Ryang, M.; Tsutsumi, S. BCJ 1971, 44, 2552.
148. Cabrera, A.; Samain, H.; Mortreux, A.; Petit, F.; Welch, A.-J. OM 1990, 9, 959.
149. Cabrera, A.; Mortreux, A.; Petit, F. J. Mol. Catal. 1988, 47, 11.

William J. Kerr

University of Strathclyde, Glasgow, UK



Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.