Sodium Periodate1


[7790-28-5]  · INaO4  · Sodium Periodate  · (MW 213.89)

(oxidative cleavage of 1,2-diols;2 oxidation of sulfides,3 selenides,4 phenols,5 indoles,6 and tetrahydro-b-carbolines7)

Alternate Name: sodium metaperiodate.

Physical Data: mp 300 °C (dec); specific gravity 3.865.

Solubility: sol H2O (14.4 g/100 mL H2O at 25 °C; 38.9 g/100 mL at 51.5 °C), H2SO4, HNO3, acetic acid; insol organic solvents.

Form Supplied in: colorless to white tetragonal, efflorescent crystals; readily available.

Handling, Storage, and Precautions: irritant; gloves and safety goggles should be worn when handling this oxidant; avoid inhalation of dust and avoid contact of oxidant with combustible matter.


Sodium periodate is widely used for the oxidation of a variety of organic substrates and as a cooxidant in other oxidation reactions (see Sodium Periodate-Osmium Tetroxide and Sodium Periodate-Potassium Permanganate).8 The NaIO4 oxidation is usually conducted in water; however, for organic substrates that are insoluble in water, an organic cosolvent (e.g. MeOH, 95% EtOH, 1,4-dioxane, acetone, MeCN) is used. Alternatively, the oxidation can be conducted either with phase-transfer catalysis (PTC) using quaternary ammonium5 or phosphonium9 salts in a two-phase system, or in an organic solvent if the oxidant is first coated on an inert support.10

Oxidative Cleavage of 1,2-Diols.

NaIO4 is widely used for the oxidative cleavage2 of a variety of 1,2-diols to yield aldehydes or ketones (eq 1). In this respect, it complements the Lead(IV) Acetate method for oxidation. 1,2-Diols have been shown to be chemoselectively cleaved by NaIO4 in the presence of a sulfide group.11 NaIO4 coated on wet silica gel efficiently oxidizes 1,2-diols to the aldehydes (eq 2).10a This method is particularly useful for the preparation of aldehydes which readily form hydrates, and it is also convenient to conduct because isolation of the product involves simple filtration of the reaction mixture and evaporation.

Oxidation of Sulfides to Sulfoxides.

The selective oxidation of sulfides to sulfoxides is an important transformation because sulfoxides are useful intermediates in synthesis.12 The reaction is conducted using an equimolar amount of NaIO4 in aqueous methanol at 0 °C (eq 3).3 Higher reaction temperatures or the use of an excess of NaIO4 result in overoxidation to give sulfones. NaIO4 supported on acidic alumina (eq 4)10b,c or silica gel10d is effective for the selective oxidation of sulfides, at ambient temperature, to afford good yields of sulfoxides. Phase transfer-catalyzed NaIO4 oxidation of sulfides also results in the selective formation of sulfoxides.9

a-Phosphoryl sulfoxides, useful for the preparation of vinylic sulfoxides,13 are prepared in high yields by the oxidation of a-phosphoryl sulfides using NaIO4.14 Vinylic sulfoxides can also be prepared in good yields by the oxidation of vinylic sulfides using NaIO4 (eq 5).15 Poor yields of sulfoxides are obtained in the NaIO4 oxidation of acetylenic sulfides.15a

2-Substituted 1,3-dithianes are stereoselectively oxidized to the trans-1-oxide by NaIO4 at low temperatures.16 Dimethyl dithioacetals of aldehydes and ketones suffer NaIO4-mediated hydrolysis to give carbonyl compounds.17 This method could be useful for the deprotection of dimethyl dithioacetals. Oxidation of dithioethers such as 1,4-dithiacycloheptane using NaIO4 at 0 °C furnishes the 1-oxide in modest yield.18 The use of m-Chloroperbenzoic Acid for this oxidation leads to an appreciable amount of the 1,4-dioxide. Oxidation of a naphtho-1,5-dithiocin using an excess of NaIO4 at rt results in a high yield of the cis-1,5-dioxide.19 The sulfide unit in thiosulfoxides is selectively oxidized to the S,S-dioxide in good yields using an equimolar amount of NaIO4 at 0 °C.20 Unsymmetrical thiosulfinic S-esters are efficiently converted to the thiosulfonic S-esters, without concomitant cleavage of the S-S bond, by NaIO4 oxidation.21 NaIO4 is effective for the selective oxidation of the sulfide moiety in (1) to the sulfoxide in the presence of a disulfide linkage (eq 6).22 Other oxidants such as CrO3 in acetic acid, H2O2, and m-CPBA, which are useful for the oxidation of simple sulfides, only cause the decomposition of (1).

Oxidation of Selenides to Selenoxides.

Diaryl, dialkyl, and aryl alkyl selenides are oxidized4 to the corresponding selenoxides in high yields using a slight excess of NaIO4 at 0 °C (eq 7).4a The presence of an electron-withdrawing substituent in diaryl selenides inhibits the oxidation of the selenium center. Vinylic selenides can be oxidized23 with NaIO4 to give high yields of vinylic selenoxides (eq 8).23a In contrast, oxidation with Hydrogen Peroxide results in the cleavage of the double bond to give carboxylic acids. The oxidation of organoselenides possessing b-hydrogens results in the formation of highly unstable organoselenoxides that undergo facile syn elimination, often at room temperature, to give alkenes (eq 9).24,25 Such a process constitutes a useful method for the introduction of a double bond into organic molecules.

Oxidation of Phenols and Its Derivatives.

Dihydroxybenzenes are oxidized to give high yields of the corresponding quinones using NaIO4 supported on silica gel (eq 10)10a or under PTC (see also Tetra-n-butylammonium Periodate).5 Treatment of p-hydroxybenzyl alcohol with NaIO4 in aqueous acetic acid results in the formation of p-benzoquinone, albeit in low yield (23%).26 On the other hand, o-(hydroxymethyl)phenols possessing at least one bulky group at the C-4 position are efficiently oxidized to give spiroepoxy-2,4-cyclohexadienones (eq 11).27 In the absence of a bulky group, self-dimerization of the spiroepoxycyclohexadienone via Diels-Alder reaction occurs. In the case of o-(hydroxymethyl)phenols that are substituted with one or two aryl groups at the benzylic carbon, a novel oxidative rearrangement occurs to yield benzylidene protected catechols in modest yields (eq 12).28 However, this oxidative rearrangement is only successful if substituents are present in the C-2 and C-4 positions of the phenol unit, because oxidation of a-(2-hydroxyphenyl)benzyl alcohol only results in the formation of a dimer.

Oxidation of Indoles and Tetrahydro-b-Carbolines.

The indolic double bond in 2,3-dialkyl- and 3-alkylindoles is readily oxidized by 2 mole equiv of NaIO4 at room temperature to give o-amidoacetophenone derivatives in good yields (eq 13).6 However, the oxidation of 2,3-diphenylindole under the same conditions results in a lower yield of the oxidative cleavage product.29 Interestingly, the oxidation of 2-alkylindoles results in the formation of a mixture of products comprised of indoxyl derivatives.29 Tetrahydrocarbazoles are also efficiently oxidized by NaIO4 to afford benzocyclononene-2,7-dione derivatives.6 Tetrahydro-b-carbolines have also been subjected to NaIO4 oxidation.7 Thus, in the oxidation of the tetrahydro-b-carboline-3-carboxylates, the type of product that is formed depends upon the degree of substitution at C-1 of the starting material (eqs 14 and 15).7a

Other Applications.

1,3-Cyclohexanedione and its 3-substituted derivatives are oxidized with NaIO4, with concomitant loss of the C-2 carbon unit, to give glutaric acid in good yields.30 1,3-Cyclopentanediones react more slowly under the same conditions, and aromatic diketones such as 1,3-indandione give poor yields of the dicarboxylic acid product. a-Hydroxy carboxylic acids undergo oxidative decarboxylation to give aldehydes (eq 16)31 upon treatment with aqueous NaIO4; however, long reaction times are required. The use of PTC9 or Bu4NIO4 allows for shorter reaction times without adversely affecting the yield. The oxidation of hydrazine with NaIO4 in the presence of trace amounts of aqueous Copper(II) Sulfate and Acetic Acid results in the formation of Diimide. The in situ generation of diimide by this method has been successfully applied to a one-pot procedure for the reduction of alkenes (eq 17).32

A secondary amide is obtained by selective oxidation of a tertiary carbon center in adamantane with NaIO4 in the presence of iron(III) perchlorate in acetonitrile (eq 18).33 Dimethylhydrazones undergo periodate induced hydrolysis, at pH 7, to give carbonyl compounds in high yields (eq 19).34 However, these conditions are unsuitable for the hydrolysis of dimethylhydrazones derived from aromatic or a,b-unsaturated aldehydes because mixtures of aldehydes and nitriles are formed.

Acylphosphoranes are oxidized to a,b-dicarbonyl compounds in fair yields using aqueous NaIO4 (eq 20).35 This method complements other methods such as the Potassium Permanganate36a or Ruthenium(VIII) Oxide oxidation36b of alkynes. NaIO4 is also used for the oxidation of hydroxamic acids and N-hydroxycarbamic esters at pH 6 to generate highly reactive nitroso compounds.37 The oxidations are usually conducted in the presence of conjugated dienes so that the nitroso intermediates are trapped as their Diels-Alder cycloadducts (eq 21).

1. (a) Shing, T. K. M. COS 1991, 7, 703. (b) Sklarz, B. QR 1967, 21, 3. (c) House, H. O. Modern Synthetic Reactions, 2nd ed.; Benjamin/Cummings: Menlo Park, CA, 1972.
2. (a) Kovar, J.; Baer, H. H. CJC 1971, 49, 3238. (b) Torii, S.; Uneyama, K.; Ueda, K. JOC 1984, 49, 1830. (c) Schmid, C. R.; Bryant, J. D.; Dowlatzedah, M.; Phillips, J. L.; Prather, D. E.; Renee, D. S.; Sear, N. L.; Vianco, C. S. JOC 1991, 56, 4056. (d) Jackson, D. Y. SC 1988, 18, 337.
3. (a) Leonard, N. J.; Johnson, C. R. JOC 1962, 27, 282. (b) Johnson, C. R.; Keiser, J. E. OS 1966, 46, 78. (c) Lee, J. B.; Yergatian, S. Y.; Crowther, B. C.; Downie, I. M. OPP 1990, 22, 544.
4. (a) Cinquini, M.; Colonna, S.; Giovini, R. CI(L) 1969, 1737. (b) Entwistle, I. D.; Johnstone, R. A. W.; Varley, J. H. CC 1976, 61. (c) Masuyama, Y.; Ueno, Y.; Okawara, M. CL 1977, 835.
5. Takata, T.; Tajima, R.; Ando, W. JOC 1983, 48, 4764.
6. (a) Dolby, L. J.; Booth, D. L. JACS 1966, 88, 1049. (b) Rivett, D. E.; Wilshire, J. F. K. AJC 1971, 24, 2717.
7. (a) Gatta, F.; Misiti, D. JHC 1989, 26, 537. (b) Akimoto, H.; Okamura, K.; Yui, M.; Shiori, T.; Kuramoto, M.; Kikugawa, Y.; Yamada, S.-I. CPB 1974, 22, 2614. (c) Hutchinson, C. R.; O'Loughlin, G. J.; Brown, R. T.; Fraser, S. B. CC 1974, 928.
8. Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. JOC 1981, 46, 3936.
9. Ferraboschi, P.; Azadani, M. N.; Santaniello, E.; Trave, S. SC 1986, 16, 43.
10. (a) Daumas, M.; Vo-Quang, Y.; Vo-Quang, L.; Le Goffic, F. S 1989, 64. (b) Liu, K.-T.; Tong, Y.-C. JOC 1978, 43, 2717. (c) Liu, K.-T.; Tong, Y.-C. JCR(S) 1979, 276. (d) Gupta, D. N.; Hodge, P.; Davies, J. E. JCS(P1) 1981, 2970.
11. (a) Fleet, G. W. J.; Shing, T. K. M. CC 1984, 835. (b) Wolfrom, M. L.; Yosizawa, Z. JACS 1959, 81, 3477.
12. (a) Trost, B. M.; Salzmann, T. N. JACS 1973, 95, 6840. (b) Trost, B. M.; Salzmann, T. N. JOC 1975, 40, 148.
13. Mikolajczyk, M.; Grzejszczak, S.; Zatorski, A. JOC 1975, 40, 1979.
14. Mikolajczyk, M.; Zatorski, A. S 1973, 669.
15. (a) Russel, G. A.; Ochrymowycz, L. A. JOC 1970, 35, 2106. (b) Evans, D. A.; Bryan, C. A.; Sims, C. L. JACS 1972, 94, 2891.
16. (a) Carey, F. A.; Dailey, O. D., Jr.; Hernandez, O.; Tucker, J. R. JOC 1976, 41, 3975. (b) Carey, F. A.; Dailey, O. D., Jr.; Fromuth, T. E. PS 1981, 10, 163.
17. Nieuwenhuyse, H.; Louw, R. TL 1971, 4141.
18. Roush, P. B.; Musker, W. K. JOC 1978, 43, 4295.
19. Glass, R. S.; Broeker, J. L. T 1991, 47, 5077.
20. Ogura, K.; Suzuki, M.; Tsuchihashi, G.-I. BCJ 1980, 53, 1414.
21. (a) Takata, T.; Kim, Y. H.; Oae, S. BCJ 1981, 54, 1443. (b) Kim, Y. H.; Takata, T.; Oae, S. TL 1978, 2305.
22. Hiskey, R. G.; Harpold, M. A. JOC 1967, 32, 3191.
23. (a) Sevrin, M.; Dumont, W.; Krief, A. TL 1977, 3835. (b) Harirchian, B.; Magnus, P. CC 1977, 522.
24. Reich, H. J.; Reich, I. L.; Renga, J. M. JACS 1973, 95, 5813.
25. Clive, D. L. J. CC 1973, 695.
26. Adler, E.; Holmberg, K.; Ryrfors, L.-O. ACS 1974, B28, 883.
27. Becker, H.-D.; Bremholt, T.; Adler, E. TL 1972, 4205.
28. Becker, H.-D.; Bremholt, T. TL 1973, 197.
29. Dolby, L. J.; Rodia, R. M. JOC 1970, 35, 1493.
30. Wolfrom, M. L.; Bobbitt, J. M. JACS 1956, 78, 2489.
31. Yanuka, Y.; Katz, R.; Sarel, S. TL 1968, 1725.
32. Hoffman, J. M., Jr.; Schlessinger, R. H. CC 1971, 1245.
33. Kotani, E.; Kobayashi, S.; Ishii, Y.; Tobinaga, S. CPB 1985, 33, 4680.
34. Corey, E. J.; Enders, D. TL 1976, 11.
35. Bestmann, H.-J.; Armsen, R.; Wagner, H. CB 1969, 102, 2259.
36. (a) See Potassium Permanganate. (b) Zibuck, R.; Seebach, D. HCA 1988, 71, 237.
37. (a) Kirby, G. W.; McLean, D. JCS(P1) 1985, 1443. (b) Sklarz, B.; Al-Sayyab, A. F. JCS 1964, 1318. (c) See Tetraethylammonium Periodate.

Andrew G. Wee & Jason Slobodian

University of Regina, Saskatchewan, Canada

Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.