Sodium Hydroxymethanesulfinate

[149-44-0]  · CH3NaO3S  · Sodium Hydroxymethanesulfinate  · (MW 118.10) (dihydrate)

[6035-47-8]  · CH7NaO5S  · Sodium Hydroxymethanesulfinate  · (MW 154.14) (Zn salt)


(reducing agent for elemental selenium and tellurium, diselenides, a-halo ketones, and aromatic aldehydes; yields symmetrical sulfones with primary halides and with Michael acceptors; a source of SO2-&bdot; and SO22-)

Alternate Names: Rongalite; sodium formaldehyde sulfoxylate.

Physical Data: mp (dihydrate) 64.5 °C; d 1.75 g cm-3.

Solubility: v sol H2O; sol aq EtOH, formamide, DMSO; sl sol DMF; insol abs EtOH, ether, CS2, benzene.

Form Supplied in: the white, crystalline dihydrate is available commercially with a purity of 90% or greater. May contain up to 5% Na2SO3 or NaHSO3.

Analysis of Reagent Purity: iodometric titration.1

Purification: recrystallization from H2O and vacuum drying.

Handling, Storage, and Precautions: thermally unstable (2HOCH2SO2Na -> 2CH2O + Na2SO3 + S + H2O). Slowly decomposes in air. Above 80 °C in air the odor of hydrogen sulfide becomes apparent. Keep refrigerated and airtight. Hygroscopic. In aqueous solutions the decomposition products include HOCH2SO3Na, Na2SO3, Na2S2O3, HCO2Na, H2S, CH2O. Stability is greatest between pH 6 and 9. Low toxicity (oral LD50 (mouse) 4 g kg-1). Can be handled without unusual precautions. Incompatible with oxidizing agents and acids.

Reduction of Se and Te.

Elemental Selenium2 and Tellurium2a,3 are reduced by Rongalite to Sodium Selenide and Sodium Telluride. Colored solutions are common and indicate the presence of Na2Sen (red-brown) or Na2Ten (red-purple), probably existing mainly as Na2Se2 and Na2Te2. Solutions of Na2Ten obtained from Rongalite are capable of converting tosylates of primary, optically active glycidols to optically active secondary and tertiary allylic alcohols; however, these same solutions perform sluggishly with secondary tosylates, for which solutions of telluride ions produced via reduction with a borohydride are required.4 It is suggested that borane byproducts in the reduction of Te with borohydrides catalyze the telluride reaction with the sterically more hindered secondary tosylates.

Reductions of Organic Compounds.

Reductions performed by Rongalite are sensitive to solvent, temperature, and the presence or absence of base. The reduction of diselenides is a useful method of producing selenide anions (RSe-) in situ for further reaction with electrophilic reagents (eq 1).5 The reductive dehalogenation of phenacyl chlorides and bromides occurs smoothly, but aliphatic analogs are less reactive.6 The addition of a nucleophilic catalyst (Sodium Iodide) in the reduction of phenacyl chloride under anhydrous conditions gives the symmetrical 1,4-dione as the major product instead of acetophenone (eq 2).6b 2,4-Dinitrobenzyl bromide yields 2,4-dinitrotoluene; perfluorinated aromatic and aliphatic iodides (ArFI, RFI) are reduced to ArFH and RFH by Rongalite.7 Reduction of aromatic aldehydes to benzyl alcohols (60-77%)8 and benzils to benzoins (62-75%)8,9 occurs best in DMF solvent at 100 °C. Simple ketones are reduced very slowly, and cyano groups are unaffected. 7,7,8,8-Tetracyanoquinodimethane, fumaronitrile, and fumaric acid are reduced to p-phenylenedimalononitrile (71%), succinodinitrile (49%), and succinic acid (no yield given), respectively.10 Rongalite is used widely in the reduction of vat dyes.

Sulfones and Sulfinates.

Symmetrical sulfones are obtained by treatment of primary halides with Rongalite, presumably by way of intermediate sulfinate salts. Benzyl halides give the best yields (45-88%) (eq 3);6b,11 di-n-butyl sulfone is obtained from n-butyl bromide (46%), thiacyclohexane 1,1-dioxide from 1,5-dibromopentane (43%), and diallyl sulfone from allyl bromide (20%).6b Phenacyl halides yield sulfones when the reaction is conducted in the presence of Sulfur Dioxide (eq 4).6b When a,a-dibromo-o-xylene is treated with a slurry of Rongalite in DMF at 0-25 °C, a cyclic sulfinate (sultine) is obtained. If sulfur dioxide is passed through the reaction mixture at 70 °C, the cyclic sulfone is obtained (eq 5).12 Sulfones are also obtained by the reaction of Rongalite via SO22- or HSO2- with activated double bonds. Mannich bases13 and a,b-unsaturated carbonyl, nitrile, sulfonyl, or pyridyl derivatives yield symmetrical sulfones (eq 6).14 Treatment of anilines with Rongalite, Formaldehyde, and concentrated aqueous HCl produces p-aminobenzyl sulfones.15 Sodium sulfinates (RFSO2Na) are isolated in the reaction of perfluorinated alkyl iodides (RFI) with Rongalite in acetonitrile or DMF; reduction to RFH occurs in ethanol or dioxane.7b,16

Perfluoroalkylation Reactions.

Perfluoroalkyl radicals are generated from perfluoroalkyl iodides or bromides and the anion radical, SO2-&bdot;, obtained from Rongalite. Additions of the perfluoroalkyl radicals to disulfides (eq 7),17 pyridines,18 coumarins (eq 8),19 and other alkenes20 give good yields of perfluoroalkyl derivatives. Cyano, amino, and ester groups are unaffected.


The hydrolysis of primary perfluoroalkyl iodides or bromides with Rongalite-NaHCO3 in aqueous DMF or DMSO gives perfluoro carboxylates (51-86%).21

Related Reagents.

Sodium Dithionite.

1. The United States Pharmacopeial Convention, The United States Pharmacopeia/The National Formulary, USP XXII/NF XVII; Mack: Easton, PA, 1989; p 1979.
2. (a) Tschugaeff, L.; Chlopin, W. CB 1914, 47, 1269. (b) Bird, M. L.; Challenger, F. JCS 1942, 570. (c) McCullough, J. D.; Lefohn, A. IC 1966, 5, 150.
3. (a) Balfe, M. P.; Chaplin, C. A.; Phillips, H. JCS 1938, 341. (b) Bird, M. L., Challenger, F. JCS 1939, 163. (c) Spencer, H. K.; Cava, M. P. JOC 1977, 42, 2937. (d) Lohner, W.; Praefcke, K. CB 1978, 111, 3745. (e) Farrar, W. V.; Gulland, J. M. JCS 1945, 11.
4. (a) Discordia, R. P.; Murphy, C. K.; Dittmer, D. C. TL 1990, 31, 5603. (b) Dittmer, D. C.; Discordia, R. P.; Zhang, Y.; Murphy, C. K.; Kumar, A.; Pepito, A. S.; Wang, Y. JOC 1993, 58, 718.
5. (a) Reich, H. J.; Chow, F.; Shah, S. K. JACS 1979, 101, 6638. (b) Reich, H. J.; Shah, S. K.; Chow, F. JACS 1979, 101, 6648. (c) Gasanov, F. G.; Aliev, A. Yu.; Mamedov, E. G.; Akhmedov, I. M. Azerb. Khim. Zh. 1981, 49 (CA 1982, 96, 217 607v).
6. (a) Harris, A. R. SC 1987, 17, 1587. (b) Jarvis, W. F.; Hoey, M. D.; Finocchio, A. L.; Dittmer, D. C. JOC 1988, 53, 5750.
7. (a) Grady, B. J.; Dittmer, D. C. JFC 1990, 50, 151. (b) Huang, B.; Liu, J. Chin. J. Chem. 1990, 355 (CA 1991, 114, 142 617c).
8. Harris, A. R.; Mason, T. J. SC 1989, 19, 529.
9. Heilmann, S. M.; Rasmussen, J. K.; Smith, H. K., II JOC 1983, 48, 987.
10. Hillhouse, J. H.; Blair, I. A.; Field, L. PS 1986, 26, 169.
11. (a) Fromm, E. CB 1908, 41, 3397. (b) Harris, A. R. SC 1988, 18, 659. (c) Loupy, A.; Sansoulet, J.; Harris, A. R. SC 1989, 19, 2939.
12. Hoey, M. D.; Dittmer, D. C. JOC 1991, 56, 1947.
13. (a) Messinger, P.; Greve, H. S 1977, 259. (b) Messinger, P.; Greve, H. AP 1977, 310, 674.
14. (a) Kerber, R.; Starnick, J. CB 1971, 104, 2035. (b) Kerber, R.; Gestrich, W. CB 1973, 106, 798. (c) Trofimov, F. A.; Tsyshkova, N. G.; Grinev, A. N. Chem. Heterocycl. Compd. 1972, 8, 1170.
15. Binz, A.; Limpach, O.; Janssen, W. CB 1915, 48, 1069.
16. Tordeux, M.; Langlois, B.; Wakselman, C. JOC 1989, 54, 2452.
17. Wakselman, C.; Tordeux, M.; Clavel, J.-L.; Langlois, B. CC 1991, 993.
18. Huang, B.; Liu, J. TL 1990, 31, 2711.
19. Huang, B.; Liu, J.; Huang, W. CC 1990, 1781.
20. Huang, B.; Liu, J. Chin. J. Chem. 1990, 358 (CA 1991, 114, 142 604w).
21. Huang, B.-N.; Haas, A.; Lieb, M. JFC 1987, 36, 49.

Donald C. Dittmer

Syracuse University, NY, USA

Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.