1-Propenyl Bromide1


[590-13-6]  · C3H5Br  · 1-Propenyl Bromide  · (MW 120.98) (E)


(precursor for (E)- or (Z)-1-propenyllithium and 1-propenylmagnesium bromide; reagent for electrophilic propenylation)

Alternate Name: 1-bromo-1-propene.

Physical Data: bp 58.5 °C (Z), 64.5 °C (E); d 1.420 g cm-3 (Z), 1.428 g cm-3 (E); n25D 1.4508 (Z), 1.4534 (E).

Solubility: insol water; sol alcohol, ether, most other organic solvents.

Form Supplied in: colorless liquid; commercially available (Z-isomer of 97% purity or a 70:30 Z/E mixture).

Preparative Methods: (Z)- and (E)-1-propenyl bromides can be obtained through spinning band distillation of the commercially available mixture of isomers (Z/E = 70/30). However, the (E)-isomer can only be obtained with difficulty due to thermal isomerization to the (Z)-isomer. Pure (Z)-1-propenyl bromide can be prepared by bromination of (E)-crotonic acid followed by bromodecarboxylation of the resulting erythro-2,3-dibromobutanoic acid in the presence of Triethylamine or Diisopropylethylamine at 40 °C (eq 1).2 (E)-1-Propenyl bromide can be obtained3 in 98% purity by treatment of the commercially available mixture of isomers (Z/E = 70/30) with Sodium Hydroxide in n-BuOH at reflux until no (Z)-1-propenyl bromide is detected by GLC.

Handling, Storage, and Precautions: stored in a refrigerator to inhibit thermal and acid-catalyzed isomerization. Avoid breathing vapor and contact with skin and eyes. Use in a fume hood.

General Discussion.

Both (E)- and (Z)-1-propenylmagnesium bromides are prepared in THF4 from the corresponding bromides with 80% and 90% retention of the configuration,5 respectively. They react with various electrophiles1,6 (eqs 2 and 3)7 (see also Isopropenylmagnesium Bromide and Vinylmagnesium Bromide). Pure (E)-1-propenylmagnesium bromide can also be prepared from 1-Propenyllithium and anhydrous Magnesium Bromide in diethyl ether.8

(Z)- or (E)-1-propenyl bromide gives (Z)- or (E)-1-Propenyllithium by reaction with Lithium powder (eq 4)9 or by metal-halogen exchange reaction with t-Butyllithium (eq 5).10

Vinylation of Grignard reagents can be achieved easily with (Z)- or (E)-propenyl bromide in the presence of an iron or palladium complex catalyst11 (eqs 6 and 7).3,11a

Under the influence of Nickel(II) Chloride hydrate, in the presence of Zinc and Pyridine, (Z)-1-propenyl bromide reacts with Ethyl Acrylate, Acrylonitrile, and Methyl Vinyl Ketone (eq 8).12

In the presence of a palladium(0) complex and Copper(I) Iodide, (Z)-1-propenyl bromide reacts stereospecifically with terminal alkynes to give (Z)-enynes (eq 9).13

Under palladium catalysis, reaction of (E)-1-propenyl bromide with an allene hydrocarbon generates a transient p-allyl palladium complex which is trapped by sodium Diethyl Malonate to give a conjugated diene in high yield (eq 10).14

Magnesio Derivatives.

In the presence of Silver(I) Nitrate and palladium or nickel complexes, (Z)- or (E)-1-propenyl magnesium bromide couples with alkyl (eq 11),15 vinyl (eq 12),16,17 and aryl halides (eq 13).17

(E)-1-Propenylmagnesium bromide stereospecifically dimerizes on treatment with Copper(I) Chloride.18 However, the propenyl unit can be transferred by standard cuprate reactions19 (eq 14)20 (see also 2-Propenylmagnesium Bromide-Copper(I) Iodide).

The transmetalation of 1-propenylmagnesium bromide with Tri-n-butylchlorostannane6e,21 or Manganese(II) Chloride22 forms 1-propenyl tin and manganese compounds. The latter react with a,b-unsaturated aldehydes in 1,4-fashion (eq 15).23

1. (a) Normant, H. Advances in Organic Chemistry; Interscience: New York, 1960; Vol. 2, p 1. (b) Ioffe, S. T.; Nesmeyanov, A. N. Methods of Elemento-Organic Chemistry; North-Holland: Amsterdam, 1967; Vol. 2, p 1. (c) Negishi, E. I. Organometallics in Organic Synthesis; Wiley: New York, 1980.
2. Fuller, C. E.; Walker, D. G. JOC 1991, 56, 4066.
3. Hayashi, T.; Konishi, M.; Okamoto, Y.; Kabeta, K.; Kumada, M. JOC 1986, 51, 3772.
4. Normant, H. BSF(2) 1957, 728.
5. Mechin, B.; Naulet, N. JOM 1972, 39, 229.
6. (a) Normant, H.; Ficini, J., BSF(2) 1956, 1441. (b) Cuvigny, T.; Normant, H. BSF(2) 1961, 2423. (c) Ficini, J.; Normant, H. BSF(2) 1964, 1294. (d) Normant, J. BSF(2) 1963, 1888. (e) Seyferth, D.; Vaughan, L. G. JOM 1963, 1, 138. (f) Erdik, E. T 1984, 40, 641. (g) Rambaud, M.; Bakasse, M.; Duguay, G.; Villieras, J. S 1988, 564. (h) Reich, H. J.; Wollowitz, S. JACS 1982, 104, 7051.
7. Bartmann, E.; Bogdanovic, B.; Janke, N.; Liao, S.; Schlichte, K.; Spliethoff, B.; Treber, J.; Westeppe, U.; Wilczok, U. CB 1990, 123, 1517.
8. Burke, S. D.; Schoenen, F. J.; Murtiashaw, C. W. TL 1986, 27, 449.
9. (a) Braude, E. A.; Coles, J. A. JCS 1951, 2078. (b) Nesmeyanov, A. N.; Borisov, A. E. T 1957, 1, 158. (c) Whitesides, G. M.; Casey, C. P.; Krieger, J. K. JACS 1971, 93, 1379. (d) Casey, C. P.; Boggs, R. A. TL 1971, 2455.
10. Neumann, H.; Seebach, D. TL 1976, 4839.
11. (a) Smith, R. S.; Kochi, J. K. JOC 1976, 41, 502. (b) Kochi, J.; Tamura, M. JACS 1971, 93, 1487. (c) Tamura, M.; Kochi, J. S 1971, 303. (d) Consiglio, G.; von Bezard, D. A.; Morandini, F.; Pino, P. HCA 1978, 61, 1703.
12. Sustmann, R.; Hopp, P.; Holl, P. TL 1989, 30, 689.
13. Lee, N. H.; Jacobsen, E. N. TL 1991, 32, 6533.
14. Ahmar, M.; Barieux, J. J.; Cazes, B.; Gore, J. T 1987, 43, 513.
15. Tamura, M.; Kochi, J. JACS 1971, 93, 1483.
16. Dang, H. P.; Linstrumelle, G. TL 1978, 191.
17. Zembayashi, M.; Tamao, K.; Kumada, M. TL 1975, 1719.
18. Kauffmann, T.; Sahm, W. AG(E) 1967, 6, 85.
19. (a) Posner, G. H. OR 1975, 22, 253. (b) Normant, J. F. S 1972, 63. (c) Lipshutz, B. H. S 1987, 325. (d) Lipshutz, B. H. COS 1991, 1, 107. (e) Lipshutz, B. H.; Sengupta, S. OR 1992, 41, 135.
20. Kant, J. JOC 1993, 58, 2296.
21. (a) Labadie, J. W.; Tueting, D.; Stille, J. K. JOC 1983, 48, 4634.
22. Cahiez, G.; Alami, M. T 1989, 45, 4163.
23. (a) Cahiez, G.; Alami, M. TL 1989, 30, 7365. (b) Cahiez, G.; Alami, M. TL 1990, 31, 7425.

Gérard Linstrumelle & Mouâd Alami

Ecole Normale Supérieure, Paris, France

Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.