Phenylzinc Chloride


[28557-00-8]  · C6H5ClZn  · Phenylzinc Chloride  · (MW 177.95)

(phenyl coupling reagent in the presence of palladium(0) or copper(I) complexes)

Solubility: sol ether, THF; reacts rapidly with H2O and protic solvents.

Preparative Methods: usually prepared by transmetalation of Phenylmagnesium Bromide with Zinc Chloride.1 Related arylzinc halides can either be prepared by the direct insertion of zinc,2 by a transmetalation from the corresponding aryllithium,3 or electrochemically.4 Diarylzincs have been generated under Barbier conditions.5

Handling, Storage, and Precautions: reacts with oxygen; should be handled and stored under an inert atmosphere in the absence of moisture.

Palladium- and Nickel-Catalyzed Reactions.

Although arylzinc halides display a low reactivity toward many organic electrophiles, the use of late transition metal (Ni, Pd) complexes allows cross-coupling reactions to be performed with a variety of electrophiles. In pioneering work by Negishi,1,6 the coupling of phenylzinc chloride with various aromatic, allenic, and alkenyl7 iodides or bromides in the presence of 1-5 mol % of a Pd0 catalyst provides a unique preparation of polyfunctionalized unsaturated molecules (eqs 1 and 2).8,9 Cross coupling with alkenyl triflates is also possible (eq 3).10

The Pd-catalyzed reaction of phenylzinc chloride with acid chlorides gives an efficient preparation of various types of ketones (eq 4).11 The Ni-catalyzed coupling of a-bromo nitriles and esters furnishes the arylated carbonyl derivatives in satisfactory yields.12 The Pd-catalyzed substitution with allylic acetates proceeds at the more hindered position of the allylic system, whereas the substitution reaction with stabilized nucleophiles occurs at the less hindered position (eq 5).13 Also, contrary to the reaction with stabilized nucleophiles, the substitution with phenylzinc chloride always proceeds with formal inversion (eq 6).14 1-Vinylcyclopropyl tosylate reacts with high regioselectivity with phenylzinc chloride.15 An intramolecular carbopalladation of alkynes triggered by an oxidative addition of a phenylpalladium complex to aromatic iodides provides an interesting synthesis of various cyclic systems (eq 7).16 Finally, diphenylzinc undergoes a 1,4-addition to unsaturated aldehydes and ketones in the presence of a nickel catalyst.5

Copper-Mediated Reactions.

Transmetalation of phenylzinc halides to the corresponding copper reagents allows the reaction with allylic halides, enones, and acid chlorides in satisfactory yields (eq 8).2

1. Negishi, E.; Takahashi, T.; King, A. O. OS 1988, 66, 67.
2. (a) Majid, T. N.; Knochel, P. TL 1990, 31, 4413. (b) Zhu, L.; Wehmeyer, R. M.; Rieke, R. D. JOC 1991, 56, 1445.
3. (a) Tucker, C. E.; Majid, T. N.; Knochel, P. JACS 1992, 114, 3983. (b) Venegas, P.; Cahiez, G.; Tucker, C. E.; Majid, T. M.; Knochel, P. CC 1992, 1406.
4. Sibille, S.; Ratovelomanana, V.; Perichon, J. CC 1992, 283.
5. (a) Luche, J. L.; Petrier, C.; Dupuy, C. TL 1984, 25, 3463. (b) de Souza Barboza, J. C.; Petrier, C.; Luche, J.-L. TL 1985, 26, 829.
6. (a) Negishi, E.; King, A. O.; Okukado, N. JOC 1977, 42, 1821. (b) Negishi, E.; Matsushita, H.; Okukado, N. TL 1981, 22, 2715.
7. (a) Minato, A.; Tamao, K.; Hayashi, T.; Suzuki, K.; Kumada, M. TL 1980, 21, 845. (b) Bumagin, N. A.; Ponomaryov, A. B.; Beletskaya, I. P. JOM 1985, 291, 129. (c) Minato, A.; Suzuki, K.; Tamao, K. JACS 1987, 109, 1257. (d) Hyuga, S.; Chiba, Y.; Yamashina, N.; Hara, S.; Suzuki, A. CL 1987, 1757. (e) Hyuga, S.; Yamashina, N.; Hara, S.; Suzuki, A. CL 1988, 809. (f) Satoh, Y.; Serizawa, H.; Miyaura, N.; Hara, S.; Suzuki, A. TL 1988, 29, 1811. (g) Celebuski, J.; Munro, G.; Rosenblum, M. OM 1986, 5, 256. (h) Bumagin, N. A.; Ponmarev, A. B.; Beletskaya, I. P. ZOB 1987, 23, 1345. (i) de Graaf, W.; Boersma, J.; van Koten, G.; Elsevier, C. J. JOM 1989, 378, 115. (j) Ruitenberg, K.; Kleijn, H.; Elsevier, C. J.; Meijer, J.; Vermeer, P. TL 1981, 22, 1451. (k) Elsevier, C. J.; Vermeer, P. JOC 1985, 50, 3042. (l) Elsevier, C. J.; Kleijn, H.; Boersma, J.; Vermeer, P. OM 1986, 5, 716. (m) Elsevier, C. J.; Kleijn, H.; Ruitenberg, K.; Vermeer, P. CC 1983, 1529. (n) Tius, M. A.; Gomez-Galeno, J.; Zaidi, J. H. TL 1988, 29, 6909. (o) Okamoto, Y.; Yoshioka, K.; Yamana, T.; Mori, H. JOM 1989, 369, 285. (p) Potter, G. A.; McCague, R. JOC 1990, 55, 6184. (q) Gilchrist, T.; Healy, M. A. M. TL 1990, 31, 5807. (r) Ennis, D. S.; Gilchrist, T. L. TL 1989, 30, 3735. (s) Yamashina, N.; Hyuga, S.; Hara, S.; Suzuki, A. TL 1989, 30, 6555.
8. Minato, A. JOC 1991, 56, 4052.
9. Miller, R. B.; Al-Hassan, M. I. JOC 1985, 50, 2121.
10. (a) Keenan, R. M.; Kruse, L. I. SC 1989, 19, 793. (b) Stork, G.; Isaacs, R. C. A. JACS 1990, 112, 7399.
11. Negishi, E.; Bagheri, V.; Chatterjee, S.; Luo, F.-T. TL 1983, 24, 5181.
12. (a) Klingstedt, T.; Frejd, T. OM 1983, 2, 598. (b) Frejd, T.; Klingstedt, T. S 1987, 40.
13. (a) Keinan, E.; Sahei, M. CC 1984, 648. (b) Negishi, E.; Chatterjee, S.; Matsushita, H. TL 1981, 22, 3737. (c) Chatterjee, S.; Negishi, E. JOC 1985, 50, 3406.
14. (a) Matsushita, J.; Negishi, E. CC 1982, 160. (b) Keinan, E.; Roth, Z. JOC 1983, 48, 1769. (c) Dunkerton, L. V.; Serino, A. J. JOC 1982, 47, 2813. (d) Elsevier, C. J.; Stehouwer, P. M.; Westmijze, H.; Vermeer, P. JOC 1983, 48, 1103. (e) Fiaud, J. C.; Aribi-Zouioueche, L. JOM 1985, 295, 383. (f) Fiaud, J.-C.; Legros, J.-Y. JOC 1987, 52, 1907.
15. (a) Stolle, A.; Salaün, J.; de Meijere, A. SL 1991, 327. (b) Stolle, A.; Ollivier, J.; Piras, P. P.; Salaün, J.; de Meijere, A. JACS 1992, 114, 4051.
16. (a) Burns, B.; Grigg, R.; Sridharan, V.; Stevenson, P.; Sukirthalingam, S.; Worakun, T. TL 1989, 30, 1135. (b) Grigg, R.; Loganathan, V.; Sukirthalingam, S.; Sridharan, V. TL 1990, 31, 6573. (c) Wang, R.-T.; Chou, F.-L.; Luo, F.-T. JOC 1990, 55, 4846.

Paul Knochel

Philipps-Universität Marburg, Germany

Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.