Phenyl Vinyl Sulfide

PhSCH=CH2

[1822-73-7]  · C8H8S  · Phenyl Vinyl Sulfide  · (MW 136.23)

(deprotonation gives 1-phenylthiovinyllithium,1 an acyl anion equivalent which reacts with electrophiles; utilized as a probe in [4 + 2],2,3 [3 + 2],4 and [2 + 5]5 cycloaddition reactions; serves as a Diels-Alder dienophile synthetic equivalent of ethylene, acetylene, and ketene)

Physical Data: bp 94-95 °C/25 mmHg; d 1.042 g cm-3.

Form Supplied in: liquid; widely available.

Preparative Methods: recent preparative methods include: the reaction of Ethylene with Thiophenol and N-Chlorosuccinimide to give the b-chloroethyl sulfide followed by dehydrohalogenation with 1,8-Diazabicyclo[5.4.0]undec-7-ene;6 reaction of acetaldehyde diphenyl dithioacetal with Copper(I) Trifluoromethanesulfonate;7 reaction of Phenylmagnesium Bromide with 2-chloroethyl thiocyanate followed by dehydrohalogenation with Potassium t-Butoxide;8 phenylthiolate addition to 1,2-Dibromoethane followed by dehydrohalogenation with Potassium Hydroxide under phase transfer catalysis;9 reaction of acetaldehyde diphenyl dithioacetal with Benzenesulfenyl Chloride followed by dehydrohalogenation with Diisopropylethylamine;10 and as a recoverable byproduct of the reaction of 1,3-oxathiolanes with benzyne.11

Handling, Storage, and Precautions: stench; it is imperative that phenyl vinyl sulfide be used in a well-ventilated fume hood.

1-Phenylthiovinyllithium.1

This reagent has been prepared by metalation of phenyl vinyl sulfide with Lithium Diisopropylamide in THF/HMPA12 or as a slurry in hexanes13 or with n-Butyllithium/N,N,N,N-Tetramethylethylenediamine14 or Lithium 2,2,6,6-Tetramethylpiperidide/TMEDA,15 providing specific lithiation in the a-position (eq 1).1 Under these conditions, alkyllithium addition16 is suppressed. 1-Phenylthiovinyllithium reacts with a variety of electrophiles (eq 2)13,16,17 to give substituted phenyl vinyl sulfides, useful compounds in their own right. This vinyllithium species undergoes addition reactions with alkyl halides15,18 to give substituted phenyl vinyl sulfides, which under hydrolytic conditions with aqueous Brønsted12,14 or Lewis12,14 acids provide the corresponding ketones. Hence, 1-phenylthiovinyllithium belongs to the acyl anion equivalent class of umpolung reagents.

Aldehydes react with 1-phenylthiovinyllithium to give 2-phenylthioallylic alcohols (eq 3),12,14 which have been converted to vinyl ketones14 and 1,4-diketones.12 Addition of 1-phenylthiovinyllithium to ketones has provided valuable substrates for the study of [3,3]-sigmatropic rearrangements of divinylcyclobutanols19 and tandem cationic aza-Cope rearrangement-Mannich cyclization reactions.20

Utility in [4 + 2], [3 + 2], and [2 + 2] Cycloadditions.

The electron richness and half-wave potential of the double bond in phenyl vinyl sulfide have been used to advantage in reverse-electron demand and cationic radical2 Diels-Alder reactions. Phenyl vinyl sulfide reacts with tropone regiospecifically to provide bicyclo[3.2.2]nonadienone systems (eq 4),21 reacts with pyrone sulfoxide22 with high diastereoselectivity under high pressure (eq 5), has trapped the transient [1,5]-sigmatropic shift isomer of isodicyclopentanediene,3 and undergoes photosensitized electron transfer (PET) initiated cycloaddition23 with dienes to give Diels-Alder products (eq 6). The resulting sulfides of these adducts have been cleaved to the corresponding alkanes,3 oxidized to the sulfoxides followed by thermolysis to give the corresponding alkenes,22 and oxidized to the sulfones followed by a-hydroxylation to give the corresponding ketones.23 Thus phenyl vinyl sulfide can represent Diels-Alder dienophile equivalents of ethylene, acetylene, and ketene.

Phenyl vinyl sulfide participates in 1,3-dipolar cycloadditions with 2-azaallyl anions, generated from N-(tributylstannyl)methanimines and n-BuLi, to provide substituted pyrrolidines (eq 7)4 and highly stabilized isoquinolium methylides,24 and also undergoes thiyl-radical catalyzed chain cyclizations to give methylenecyclopentanes.25 Tetracyanoethylene undergoes spontaneous [2 + 2] cycloaddition with phenyl vinyl sulfide5,26 and oxetanes are derived from Boron Trifluoride Etherate catalyzed reaction of sugar-derived aldehydes with electron-rich alkenes (eq 8).27

Other Applications.

Phenyl vinyl sulfides exhibit higher selectivity and better yields than enol acetates and enol ethers in palladium catalyzed Heck-like reactions with aryl halides.28 Phenyl vinyl sulfide has been transformed into Phenylthioacetylene via a bromination-bis(dehydrobromination) sequence,29 converted to the S-vinyl sulfilimine, and utilized as an acetaldehyde enolonium ion equivalent (+CH2CHO),30 and utilized as a sensitive substrate for examination of novel hydrosilylation,31 diimide reduction,32 and asymmetric oxidation to the corresponding sulfoxide.33,34


1. Gschwend, H. W.; Rodriguez, H. R. OR 1979, 26, 1.
2. Bauld, N. L.; Bellville, D. J.; Harirchian, B.; Lorenz, K. T.; Pabon, R. A., Jr.; Reynolds, D. W.; Wirth, D. D.; Chiou, H.-S.; Marsh, B. K. ACR 1987, 20, 371.
3. Paquette, L. A.; Williams, R. V.; Carr, R. V. C.; Charumilind, P.; Blount, J. F. JOC 1982, 47, 4566.
4. Pearson, W. H.; Postich, M. J. JOC 1992, 57, 6354.
5. Graf, H.; Huisgen, R. JOC 1979, 44, 2594.
6. Hopkins, P. B.; Fuchs, P. L. JOC 1978, 43, 1208.
7. Cohen, T.; Herman, G.; Falck, J. R.; Mura, A. J., Jr. JOC 1975, 40, 812.
8. Verboom, W.; Meijer, J.; Brandsma, L. S 1978, 577.
9. Smith, M. B. SC 1986, 16, 85.
10. Bartels, B.; Hunter, R.; Simon, C. D.; Tomlinson, G. D. TL 1987, 28, 2985.
11. Nakayama, J.; Sugiura, H.; Shiotsuki, A.; Hoshino, M. TL 1985, 26, 2195.
12. Cookson, R. C.; Parsons, P. J. CC 1976, 990.
13. Harirchian, B.; Magnus, P. CC 1977, 522.
14. Cookson, R. C.; Parsons, P. J. CC 1978, 821.
15. Trost, B. M.; Lavoie, A. C. JACS 1983, 105, 5075.
16. Ager, D. J. TL 1981, 22, 587.
17. Kanemasa, S.; Kobayashi, H.; Tanaka, J.; Tsuge, O. BCJ 1988, 61, 3957.
18. Gröbel, B.-T.; Seebach, D. CB 1977, 110, 867.
19. Miller, S. A.; Gadwood, R. C. JOC 1988, 53, 2214.
20. Jacobsen, E. J.; Levin, J.; Overman, L. E. JACS 1988, 110, 4329.
21. (a) Rigby, J. H.; Sage, J.-M.; Raggon, J. JOC 1982, 47, 4815. (b) Rigby, J. H.; Sage, J.-M. JOC 1983, 48, 3591.
22. Posner, G. H.; Haces, A.; Harrison, W.; Kinter, C. M. JOC 1987, 52, 4836.
23. Harirchian, B.; Bauld, N. L. JACS 1989, 111, 1826.
24. Tsuge, O.; Kanemasa, S.; Sakamoto, K.; Takenaka, S. BCJ 1988, 61, 2513.
25. Singleton, D. A.; Huval, C. C.; Church, K. M.; Priestley, E. S. TL 1991, 32, 5765.
26. Okuyama, T.; Nakada, M.; Toyoshima, K.; Fueno, T. JOC 1978, 43, 4546.
27. Sugimura, H.; Osumi, K. TL 1989, 30, 1571.
28. Trost, B. M.; Tanigawa, Y. JACS 1979, 101, 4743.
29. Magriotis, P. A.; Brown, J. T.; Scott, M. E. TL 1991, 32, 5047.
30. Yamamoto, T.; Kakimoto, M.; Okawara, M. TL 1977, 1659.
31. Kopping, B.; Chatgilialoglu. C.; Zehnder, M.; Giese, B. JOC 1992, 57, 3994.
32. Moriarty, R. M.; Vaid, R. K.; Duncan, M. P. SC 1987, 17, 703.
33. Davis, F. A.; Reddy, R. T.; Han, W.; Carroll, P. J. JACS 1992, 114, 1428.
34. Glahsl, G.; Herrmann, R. JCS(P1) 1988, 1753.

Wayne E. Zeller

Illinois State University, Normal, IL, USA



Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.