Methyl Glyoxylate

(1; R = Me)

[922-68-9]  · C3H4O3  · Methyl Glyoxylate  · (MW 88.07) (2; R = Et)

[924-44-7]  · C4H6O3  · Ethyl Glyoxylate  · (MW 102.10) (3; R = n-Bu)

[6295-06-3]  · C6H10O3  · Butyl Glyoxylate  · (MW 130.16) (4; R = PhCH2)

[52709-42-9]  · C9H8O3  · Benzyl Glyoxylate  · (MW 164.17) (5; R = i-Pr)

[924-53-8]  · C5H8O3  · Isopropyl Glyoxylate  · (MW 116.13) (6; R = phenylmenthyl)

[129444-92-4]  · C18H24O3  · 8-Phenylmenthyl Glyoxylate  · (MW 288.42)

(two-carbon synthon utilized in electrocyclic processes (Diels-Alder reaction1, ene reactions2), various condensations (Mannich,3 aldol,4 Wittig,5 Prins,6 acyloin7), carbinolamine formation,8 and Friedel-Crafts reactions9)

Alternate Name: methyl oxoacetate.

Physical Data: (1) bp 45-50 °C/29 mmHg. (2) bp 49 °C/35 mmHg. (3) mp 46-48 °C; bp 55 °C/14 mmHg. (4) bp 130-132 °C/25 mmHg. (5) bp 34-36 °C/18 mmHg. (6) bp 135-140 °C/0.3 mmHg.

Solubility: sol most organic solvents, e.g. ether, CH2Cl2, THF, acetone, etc. (1) sol H2O (as monohydrate).

Form Supplied in: prepare fresh before use for optimum results. Drying: distill from P2O5.10b

Preparative Methods: efficient methods include oxidative cleavage of tartrate diesters, ozonolysis of maleate/fumarate derivatives, exchange reaction between appropriate dialkoxyacetate and glyoxylic acid, and NaOAc-catalyzed elimination of nitrite ion from nitrate esters.10

Purification: distillation of methyl glyoxylate monohydrate through a 10-cm Vigreux column.

Handling, Storage, and Precautions: store under N2 in a refrigerator due to their tendency to form a monohydrate and/or polymerize.

Ene Reactions.

Thermal ene reactions of glyoxylate esters with alkenes (cyclohexene, 1-alkenes, b-pinene and isobutene) occur at 150 °C, whereas the Lewis acid (AlCl3, SnCl4, FeCl3) catalyzed ene reactions proceed at a lower temperature (25-45 °C).11 The endo/exo selectivity of the thermal and Iron(III) Chloride-catalyzed ene reactions of methyl glyoxylate with cis- and trans-2-butene, cyclohexene, 2-methyl-2-butene and 1-methylcyclohexene has been well studied. With cis-2-butene at 200 °C, a 7.4:1 mixture of endo/exo adducts is obtained. Similar reaction with trans-2-butene produced a 1:0.57 mixture of endo/exo adducts (eq 1). With cyclohexene and FeCl3 catalyst, a 4.4:1 mixture of endo/exo adduct is obtained.12 Extensive cis-trans isomerization of the double bond in the substrate under the reaction conditions, as well as contamination of halogen adducts in the products, point to a stepwise cationic mechanism for the Lewis acid-catalyzed glyoxylate-ene reactions.13

The reaction course of vinylsilane with glyoxylate, on the other hand, depends on the geometry of the vinylsilane and the Lewis acid employed.14 Tin(IV) Chloride-catalyzed reaction of trans-vinylsilane produces the ene adduct; that of the cis-vinylsilane produces both the ene adduct and a silicon substitution product. When Titanium(IV) Chloride was substituted for SnCl4, the cis isomer underwent substitution to the exclusion of ene reaction (eq 2).

When the alkene bears a silyl substituent, the glyoxylate-ene reaction produces only a single regioisomer, the vinylsilane (eq 3).15 Allylic ethers with a wide range of protecting groups also produce single regioisomers via glyoxylate-ene reactions (eq 4).16 Excellent stereo- and regiocontrol are obtained with a 1,2-unsymmetrically disubstituted allylic component, producing exclusively the anti ester, which serves as a synthetic precursor for oxetanocin A (eq 5).17

By appropriate choice of the Lewis acid, the glyoxylate-ene reactions have been shown to proceed with a high level of either syn or anti diastereoselection, irrespective of the ene geometry (eq 6).18b The regio- and stereoselective glyoxylate-ene reactions have been exploited in the syntheses of brassinosteroids,18b avenaciolide,18 tetrahydrofuranyl units of polyether antibiotics (eq 7),19 and highly functionalized unsaturated amino acids (eq 8).20

A high level of asymmetric induction (>99%) can be obtained in the glyoxylate-ene reaction with chiral glyoxylate esters derived from cyclohexyl-based chiral auxiliaries (eq 9).21

A chiral titanium complex prepared in situ from (i-PrO)2TiX2 (X = Cl or Br) and (R)- or (S)-binaphthol in the presence of molecular sieves (MS 4Å) has been shown to be a catalyst for an efficient asymmetric glyoxylate-ene reaction (eq 10).22 The catalytic glyoxylate-ene reaction has been extended to vinyl sulfides, providing a high level of enantioface selection (>99% ee) along with high anti diastereoselectivity (eq 11).23

The catalytic ene technology has been utilized in the asymmetric synthesis of functionalized carbocyclic building blocks,24 a 1a,25-(OH)2-vitamin D3 synthon,25 as well as in asymmetric desymmetrization of prochiral bis-allylic silyl ethers (eq 12).26

In asymmetric ene reactions of racemic allylic as well as homoallylic ethers, the chiral BINOL-titanium catalyst discriminates between the two enantiomeric substrates sufficiently to provide efficient kinetic resolution.16a,2c Also, the chiral titanium complex derived from partially resolved BINOL is found to exhibit a remarkable level of asymmetric amplification, wherein the enantiomeric excess of the product significantly exceeds that of the chiral mediator employed.27

Cycloaddition Reactions.

[4 + 2] Cycloadditions of various alkoxy-1,3-butadiene derivatives with alkyl glyoxylates, under thermal as well as Lewis acid-catalyzed conditions, afford the corresponding dihydropyran derivatives, which are important intermediates in the total synthesis of monosaccharides and d-lactones (eq 13).28 These cycloadditions are facilitated by high pressure and microwave radiation.29

The chiral BINOL-titanium complex (eq 10) is also an effective catalyst for the hetero Diels-Alder reaction between methyl glyoxylate and 1-methoxy-1,3-butadiene, providing the cis adduct in 96% ee (eq 14). Similar cycloaddition of methyl glyoxylate and 1-methoxy-1,3-pentadiene simultaneously produces three stereogenic centers with high selectivity (eq 15).30

Organometallic Addition.

The reaction of 2-butenylstannanes with glyoxylate esters is syn selective, whereas the anti isomer is preferentially produced via the corresponding 9-BBN derivative. The selectivity increases with increasing steric bulk of the ester group (eq 16).31

Asymmetric addition of various organometallic reagents (M = Mg, Zn, Sn) to chiral 8-phenylmenthyl glyoxylate produces the corresponding a-hydroxy esters in high (>99%) enantiomeric excesses.32

Aromatic Substitution.

Ortho-hydroxyalkylation of phenols (via complexes of metal phenolates) with chiral glyoxylates produces the corresponding ortho-hydroxymandelic ester in high diastereomeric purity (eq 17).33

Glyoxylate as Nucleophile.

The two-carbon acyl anion equivalent derived from a glyoxylate ester acetal has been utilized for the preparation of novel heterocyclic a-oxoacetic acid esters (eq 18).34

Cross Coupling.

Reductive cross-coupling reactions of glyoxylate esters with carbonyl compounds in the presence of low-valent titanium compounds produce the corresponding a,b-dihydroxy carboxylates (eq 19).35

The glyoxylate esters have been utilized as valuable synthetic intermediates in the syntheses of actinolbin,36 oxacyclic carbocyclic esters,37 tetrahydro-4H-furoazepines,38 and (±)-naphthyridinomycin.39 A chiral synthesis of Pravastatin®, an important HMG-CoA reductase inhibitor, utilizes desymmetrization of 1-methyl-4-methylenecyclohexane by a catalytic asymmetric ene reaction, which provides the initial asymmetric framework (eq 20).26b

a-Imino esters derived from glyoxylate esters are valuable synthetic intermediates and act as enophiles40 and/or dienophiles41 to produce nonproteinogenic a-amino acids,42 b-lactams,43 an anti-Bredt lactam,44 b,g-alkynylglycine derivatives,45 and proline analogs.46

Related Reagents.

Glyoxal Diethyl Acetal; Ethyl Diethoxyacetate; Glyoxal; Glyoxylic Acid; Glyoxylic Acid Diethyl Dithioacetal; 8-Phenylmenthyl Glyoxylate; Tin(IV) Chloride; Titanium(IV) Chloride.


1. (a) Jurczak, J.; Tkacz, M. JOC 1979, 44, 3347. (b) Bonjouklian, R.; Ruden, R. A. JOC 1977, 42, 4095. (c) Achmatowicz, O.; Jurczac, J.; Pyrek, J. S. T 1976, 32, 2113. (d) David, S.; Eustache, J.; Lubineau, A. JCS(P1) 1979, 1795. (e) Jung, M. E.; Shishido, K.; Light, L.; Davis, L. TL 1981, 4607.
2. (a) Salomon, M. F.; Pardo, S. N.; Salomon, R. G. JACS 1980, 102, 2473. (b) Achmatowicz, O.; Szymoniak, J. JOC 1980, 45, 1228. (c) Mikami, K.; Shimizu, M. CRV 1992, 1021. (d) FF 1986, 12, 541; 1990, 15, 27, 142; 1992, 16, 24.
3. Biekert, E.; Funck, T. CB 1960, 93, 626.
4. Schultz, A. G.; Yee, Y. K. JOC 1976, 41, 561.
5. (a) Schuda, P. F.; Ebner, C. B.; Potlock, S. J. S 1987, 1055. (b) Taylor, E.; Kobayashi, T. JOC 1976, 41, 1299.
6. (a) Savostianoff, D. CR(C) 1966, 263, 605. (b) Savostianoff, D.; Pfau, M. BSF 1967, 4162.
7. Mukaiyama, T.; Sugimura, H.; Ohno, T.; Kobayashi, S. CL 1989, 1401.
8. (a) Scartazzini, R.; Peter, H.; Bickel, H.; Heusler, K.; Woodward, R. B. HCA 1972, 55, 408. (b) Finkelstein, J.; Holden, K. G.; Perchonock, C. D. TL 1978, 1629. (c) Lombardi, P.; Franceschi, G.; Arcamore, F. TL 1979, 3777. (d) Brennan, J.; Richardson, G.; Stoodely, R. J. CC 1980, 49. (e) Nader, B.; Franck, R. W.; Weinreb, S. M. JACS 1980, 102, 1153.
9. Achmatowicz, O.; Zamojski, A. Rocz. Chem. 1968, 42, 453.
10. (a) Wolf, F. J.; Weijland, J. OSC 1963, 4, 124. (b) Jung, M. E.; Shishido, K.; Davis, L. H. JOC 1982, 47, 891. (c) Blake, J.; Tretter, J. R.; Juhasz, G. J.; Bonthrone, W.; Rappoport, H. JACS 1966, 88, 4061. (d) Haggerty, J. G.; Kelly, T. R.; Schmidt, T. E. S 1972, 544. Hook, J. M. SC 1984, 14, 83. (e) Kornblum, N.; Frazier, H. W. JACS 1966, 88, 865.
11. (a) Klimova, E. I.; Arbuzov, Y. A. Dokl. Chem. 1967, 173, 386. (b) Klimova, E. I.; Antonova, N. D.; Arbuzov, Y. A. JOU 1969, 5, 1312.
12. Snider, B. B.; Van Straten, J. W. JOC 1979, 44, 3567.
13. Whitesell, J. K. ACR 1985, 18, 280.
14. Mikami, K.; Wakabayashi, H.; Nakai, T. JOC 1991, 56, 4337.
15. Mikami, K.; Loh, T. P.; Nakai, T. JACS 1990, 112, 6737.
16. (a) Mikami, K.; Shimizu, M.; Nakai, T. JOC 1991, 56, 2952. (b) Mikami, K.; Shimizu, M. JOC 1992, 57, 6105.
17. (a) Nishiyama, S.; Yamamura, S.; Kato, K.; Takita, T. TL 1988, 29, 4739, 4743. (b) Nagai, M.; Nishiyama, S.; Yamamura, S.; Kato, K.; Takita, T. TL 1990, 31, 119.
18. (a) Whitesell, J. K.; Hwang-Hsing Chen.; Lawrence, R. M. JOC 1985, 50, 4663. (b) Mikami, K.; Loh, T.-P.; Nakai, T. TL 1988, 29, 6305. (c) Schreiber, S. L.; Hoveyda, A. H. JACS 1984, 106, 7200. (d) Kallmerten, J.; Gould, T. J. JOC 1985, 50, 1128.
19. Mikami, K.; Shimizu, M. TL 1992, 33, 6315.
20. Agouridas, K.; Girodeau, J. M.; Pineau, R. TL 1985, 26, 3115.
21. (a) Whitesell, J. K.; Bhattacharya, A.; Buchanan, C. M.; Chen, H. H.; Deyo, D.; James, D.; Liu, C.-L.; Minton, M. A. T 1986, 42, 2993. (b) Whitesell, J. K.; Bhattacharya, A.; Aguilar, D. A.; Henke, K. CC 1982, 989; Whitesell, J. K. CRV 1992, 92, 953. (c) Achmatowicz, O.; Szechner, B. JOC 1972, 37, 964.
22. (a) Mikami, K.; Terada, M.; Nakai, T. JACS 1990, 112, 3949. (b) Mikami, K.; Terada, M.; Nakai, T. JACS 1989, 111, 1940. (c) Mikami, K.; Terada, M.; Nakai, T. Chem. Express 1989, 589.
23. Tereda, M.; Matsukawa, S.; Mikami, K. Annual Meet. Chem. Soc. Jpn. Osaka, March 28-31, 1992; Abs. 3E228.
24. van der Meer, F. T.; Feringa, B. L. TL 1992, 33, 6695.
25. Kabat, M. M.; Lange, M.; Wovkulich, P. M.; Uskokovic, M. R. TL 1992, 33, 7701.
26. (a) Mikami, K.; Narisawa, S.; Shimizu, M.; Terada, M. JACS 1992, 114, 6566. (b) Daniewski, A. R.; Wovkulich, P. M.; Uskokovic, M. R. JOC 1992, 57, 7133.
27. (a) Terada, M.; Mikami, K.; Nakai, T. CC 1990, 1623. (b) Terada, M.; Mikami, K. T 1992, 48, 5671. (c) Puchot, C.; Samuel, O.; Dunach, E.; Zhao, S.; Agami, C.; Kagan, H. B. JACS 1986, 108, 2353.
28. (a) Achmatowicz, O.; Bialecka-Florjanczyk, E. T 1990, 46, 5317. (b) Jurczak, J.; Golebiowski, A.; Rahm, A. TL 1986, 27, 853. (c) Castellino, S.; Sims, J. J. TL 1984, 25, 2307. (c) Konowal, A.; Jurczak, J.; Zamojski, A. T 1976, 32, 2976.
29. Stambouli, A.; Chastrette, M.; Soufiaoui, M. TL 1991, 32, 1723.
30. Terada, M.; Mikami, K.; Nakai, T. TL 1991, 32, 935.
31. (a) Yamamoto, Y.; Maeda, N.; Maruyama, K. CC 1983, 774. (b) Hull, C.; Mortlock, S. V.; Thomas, E. J. T 1989, 45, 1007.
32. (a) Whitesell, J. K.; Bhattacharya, A.; Henke, K. CC 1982, 988. (b) Yamamoto, Y.; Yatagai, H.; Ishihara, Y.; Maeda, N.; Maryuma, K. T 1984, 40, 2239. (c) Solladie-Cavallo, A.; Khiar, N. TL 1988, 29, 2189.
33. (a) Bigi, F.; Casnati, G.; Sartori, G.; Dalprato, C.; Bortolini, R. TA 1990, 1, 861. (b) Bigi, F.; Casiraghi, G.; Casnati, G.; Sartori, G.; Fava, G. G.; Belicchi, M. F. JOC 1985, 50, 5018.
34. Waldner, A. TL 1986, 27, 6059.
35. Mukaiyama, T.; Sugimura, H.; Ohno, T.; Kobayashi, S. CL 1989, 1401.
36. Garigipati, R. S.; Tschaen, D. M.; Weinreb, S. W. JACS 1985, 107, 7790.
37. Lolkema, L. M.; Hiemstra, H.; Mooiweer, H. H.; Speckamp, W. N. TL 1988, 29, 6365.
38. Shue, Y. K.; Carrera, G. M., Jr.; Hutchins, C. W.; Garvey, D. S.; Nadzan, A. M. JOC 1991, 56, 2936.
39. Evans, D. A.; Biller, S. A. TL 1985, 26, 1911.
40. Mikami, K.; Kaneko, M.; Yajima, T. TL 1993, 34, 4841.
41. (a) Weinreb, S. M.; Staib, R. R. T 1982, 38, 3087. (b) Stella, L.; Abraham, H.; Feneau-Dupont, J.; Tinant, B.; Declercq, J. P. TL 1990, 31, 2603. (c) Hamley, P.; Holmes, A. B.; Kee, A.; Ladduwahetty, T.; Smith, D. F. SL 1991, 29.
42. Tietze, L. F.; Bratz, M. S 1989, 439.
43. (a) Palomo, C.; Aizpurua, J. M.; Garcia, J. M.; Picard, J. P.; Dunogues, J. TL 1990, 31, 1921. (b) Manhas, M. S.; Ghosh, M.; Bose, A. K. JOC 1990, 55, 575.
44. Shea, K. J.; Lease, T. G.; Ziller, J. W. JACS 1990, 112, 8627.
45. Williams, R. M.; Aldous, D. J.; Aldous, S. C. JOC 1990, 55, 4657.
46. (a) Vasella, A.; Voeffray, R. CC 1981, 97. (b) Mooiweer, H. M.; Hiemstra, H.; Fortgens, H. P.; Speckamp, W. N. TL 1987, 28, 3285.

Apurba Bhattacharya

Hoechst Celanese Corporation, Corpus Christi, TX, USA



Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.