Mercury(II) Nitrate1


[7783-34-8]  · H2HgN2O7  · Mercury(II) Nitrate  · (MW 342.63)

(oxymercuration;4-9 amidomercuration;12,15 cyclopropane cleavage;17,19 glycosylation23)

Alternate Name: mercuric nitrate.

Physical Data: mp 79 °C; bp (dec); d 4.3 g cm-3.

Solubility: insol alcohol; very sol H2O (in dilute solutions forms an insol basic salt); sol acetone, THF, DME, dioxane, NH3, HNO3, and other dilute acids.

Form Supplied in: transparent, hygroscopic crystals with slight odor of HNO3. Drying: heating of the monohydrate to 55-60 °C/10-2 mmHg.2,3

Handling, Storage, and Precautions: acute poison. Exposure to all mercury compounds is to be strictly avoided. Releases toxic Hg fumes when heated to decomposition. Protect from light.


The reactivity of Hg(NO3)2 is similar to that of other HgII salts (acetate and trifluoroacetate)1 so that this reagent can be employed to achieve similar goals such as electrophilic additions. The nitrate is often superior to its relatives (due to its higher electrophilicity) and may exhibit some variations in reactivity.4 Thus, for instance, conjugated dienes afford products of both 1,4- and 1,2-addition (eq 1).5,6 By contrast, with Hg(OAc)2, only the 1,2-adduct is formed.5 In the absence of stronger nucleophiles (in a nonnucleophilic solvent), nitratomercuration has been observed.7 In the presence of Cl2 or Br2, the HgX group in the original adduct is replaced by halogen.7

In the presence of Hydrogen Peroxide, alkenes are peroxymercurated8 on reaction with Hg(NO3)2 as a result of H2O2 being a stronger nucleophile than NO3-.

Like other HgII salts, mercury(II) nitrate effects intramolecular alkoxymercuration of unsaturated alcohols to produce oxygen heterocycles (eq 2).9 Similar to other electrophilic additions, oxymercuration is a priori a reversible reaction. It has been shown that selecting the method of quenching is crucial to minimize the reversion. Thus, oxymercuration products with rigid, antiperiplanar arrangement of the C-HgX and C-O bonds (eq 2) immediately revert back to the starting material upon treatment with sources of hard halogen anion (NaCl, KBr, CuCl2, etc.). By contrast, quenching with soft reagents (e.g. CuCl) reliably affords the stable chloromercurio compound. Excess of strong acids should be avoided as H+ catalyzes reversion.9,10

In a close analogy to alkenic alcohols, unsaturated hydroperoxides react with Hg(NO3)2 to give cyclic peroxides which can be further elaborated.8,11


The mercuration of terminal or cyclic alkenes with Hg(NO3)2 in MeCN2,13,14 affords amides via the Ritter reaction (eq 3).13 In contrast to the original, strong acid-mediated reaction, this modification is less prone to rearrangements as it proceeds via a mercuronium ion.13,14 The reaction works with mono- and disubstituted double bonds but fails with trisubstituted alkenes.14 Other HgII salts, namely (AcO)2Hg and (CF3CO2)2Hg, are not satisfactory,13 apparently owing to their lower electrophilicity.

Primary amides and TsNH2 similarly add across alkenic double bonds to give the corresponding tosylamides.15 Asymmetric, intramolecular amidomercuration employing chiral carbamates has also been described (eq 4).16

Cyclopropane Ring Opening.17-19

Mercury(II) nitrate appears to be the reagent of choice to accomplish stereospecific corner opening19 of cyclopropyl derivatives (eqs 5 and 6);19,20 other HgII salts are less reactive.19,21 The reaction is also regioselective: the cleavage occurs between the most and the least substituted carbon.19 The resulting organomercurials can be transmetalated by transition metals (Pd, Mo, Cu) to accomplish a variety of interesting transformations.19


Thioglycosides can be utilized as glycosylating agents in conjunction with anhydrous Hg(NO3)2 (or AgNO3).22 Although the reaction normally affords mixtures of a- and b-glycosides,22 neighboring group participation can render it stereoselective (for discussion and examples, see Mercury(II) Chloride-Cadmium Carbonate).23


b-Pinene undergoes a Ritter-type transformation on reaction with Hg(NO3)2/MeCN24 to give the starting material for the synthesis of aristoteline25 and other indole alkaloids (eq 7);25 the reaction is not enantioselective and gives racemic products.24,25 Mercuration of enolizable ketones has little synthetic value: thus, for instance, acetone has been found to produce a mixture of nine compounds.26

Related Reagents.

Mercury(II) Acetate; Mercury(II) Trifluoroacetate; Mercury(II) Perchlorate.

1. (a) Larock, R. C. AG(E) 1978, 17, 27. (b) Larock, R. C. T 1982, 38, 1713. (c) Larock, R. C. Organomercury Compounds in Organic Synthesis; Springer: Berlin, 1985. (d) Larock, R. C. Solvomercuration/Demercuration Reactions in Organic Synthesis; Springer: Berlin, 1986.
2. Sokolov, V. I.; Reutov, O. A. IZV 1968, 225.
3. FF 1982, 10, 254.
4. (a) Brown, H. C.; Kurek, J. T.; Rei, M. H.; Thompson, K. L. JOC 1984, 49, 2551. (b) Kartashov, V. R.; Sokolova, T. N.; Vasil'eva, O. V.; Timofeev, I. V.; Grishin, Yu. K.; Bazhenok, D. V.; Zefirov, N. S. ZOR 1990, 26, 1800.
5. Bloodworth, A. J.; Hutchings, M. G.; Sotowicz, A. J. CC 1976, 578.
6. Nikanorov, V. A.; Rozenberg, V. I.; Svitan'ko, Z. P.; Reutov, O. A. DOK 1987, 293, 634.
7. (a) Bloodworth, A. J.; Cooper, P. CC 1986, 709. (b) Barluenga, J.; Martinez-Gallo, J. M.; Nájera, C.; Yus, M. CC 1985, 1422 and JCR(S) 1986, 274.
8. (a) Bloodworth, A. J.; Loevitt, M. E. CC 1976, 94. (b) Bloodworth, A. J.; Griffin, I. M. JCS(P1) 1975, 195. (c) Nixon, J. R.; Cudd, M. A.; Porter, N. A. JOC 1978, 43, 4048. (d) Porter, N. A.; Cudd, M. A.; Miller, R. W.; McPhail, A. T. JACS 1980, 102, 414. (e) Porter, N. A.; Zuraw, P. J. JOC 1984, 49, 1345. (f) Bloodworth, A. J.; Courtneidge, J. L.; Curtis, R. J.; Spencer, M. D. JCS(P1) 1990, 2951. (g) Bloodworth, A. J.; Spencer, M. D. TL 1990, 31, 5513.
9. Ko&cbreve;ovský, P. OM 1993, 12, 1969.
10. For further discussion, see: Lilikarntakul, S.; Hirama, M.; Itô, S. TL 1987, 28, 1207.
11. Bloodworth, A. J.; Curtis, R. J.; Mistry N. CC 1989, 954.
12. (a) Fry, A. J.; Simon, J. A. JOC 1982, 47, 5032. (b) Barluenga, J.; Jimenez, C.; Najera, C.; Yus, M. JCS(P1) 1983, 591. (c) Barluenga, J.; Ferrera, L.; Najera, C.; Yus, M. S 1984, 831.
13. Brown, H. C.; Kurek, J. T. JACS 1969, 91, 5647.
14. (a) Chow, D.; Robson, J. H.; Wright, G. F. CJC 1965, 43, 312. (b) Geger, J.; Vogel, D. JPR 1969, 311, 737. (c) Kozikowski, A. P.; Scripko, J. TL 1983, 24, 2051. (d) Henning, R.; Urbach, H. TL 1983, 24, 5343.
15. Barluenga, J.; Jiménez, C.; Nájera, C.; Yus, M. CC 1981, 670 and 1178.
16. Harding, K. E.; Hollingsworth, D. R.; Reibenspies, J. TL 1989, 30, 4775.
17. (a) Collum, D. B.; Mohamadi, F.; Hallock, J. S. JACS 1983, 105, 6882. (b) Collum, D. B.; Still, W. C.; Mohamadi, F. JACS 1986, 108, 2094.
18. (a) Bandaev, S. G.; Eshnazarov, Yu. Kh.; Nasyrov, I. M.; Mochalov, S. S.; Shabarov, Yu. S. ZOR 1988, 24, 733. (b) Bandaev, S. G.; Eshnazarov, Yu. Kh.; Mochalov, S. S.; Shabarov, Yu. S.; Zefirov, N. S. Metalloorg. Khim. 1992, 5, 690 (CA 1992, 117, 251 458j).
19. (a) Ko&cbreve;ovský, P.; &SSbreve;rogl, J. JOC 1992, 57, 4565. (b) Ko&cbreve;ovský, P.; &SSbreve;rogl, J.; Gogoll, A.; Hanus, V.; Polásek, M. CC 1992, 1086. (c) &SSbreve;rogl, J.; Ko&cbreve;ovský, P. TL 1992, 33, 5991. (d) Ko&cbreve;ovský, P.; &SSbreve;rogl, J.; Pour, M.; Gogoll, A. JACS 1994, 116, 186. (e) Ko&cbreve;ovský, P., Grech, J. M.; Mitchell, W. L. JOC 1995, 60, 482.
20. Langbein, G.; Siemann, H.-J.; Gruner, I.; Müller, C. T 1986, 42, 937.
21. Similar reactivity has been observed for isoelectronic TlIII: Ko&cbreve;ovsky, P.; Pour, M.; Gogoll, A.; Hanus, V.; Smr&cbreve;ina, M. JACS 1990, 112, 6735.
22. Hanessian, S.; Bacquet, C.; Lehong, N. Carbohydr. Res. 1980, 80, C17.
23. (a) Wiesner, K.; Tsai, T. Y. R.; Jin, H. HCA 1985, 68, 300. (b) Wiesner, K.; Tsai, T. Y. R. PAC 1986, 58, 799.
24. (a) Delpech, B.; Khuong-Huu, Q. TL 1973, 1533. (b) Delpech, B.; Khuong-Huu, Q. JOC 1978, 43, 4898. (c) Rappoport, Z.; Winstein, S.; Young, W. G. JACS 1972, 94, 2320.
25. (a) Mirand, C.; Massiot, G.; Lévy, J. JOC 1982, 47, 4169. (b) Stevens, R. V.; Kenney, P. M. CC 1983, 384.
26. Johnson, F. A.; Perry, W. D. OM 1989, 8, 2646.

Pavel Ko&cbreve;ovský

University of Leicester, UK

Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.