Mercury(II) Acetate


[1600-27-7]  · C4H6HgO4  · Mercury(II) Acetate  · (MW 318.69)

(inter- and intramolecular oxy-,1-3 amino-, and amidomercuration1,40,43,47 of alkenes and alkynes; cleavage of cyclopropanes;64,65 mercuration of aromatics;75 o-mercuration of phenols;76 mild oxidation101,102)

Alternate Name: mercuric acetate.

Physical Data: mp 179-182 °C; bp dec; d 3.28 g cm-3.

Solubility: sol CH2Cl2, AcOH; slightly sol alcohols; insol benzene, hexane, etc.; sol H2O (slowly hydrolyzed to HgO).

Form Supplied in: white, hygroscopic crystals. Drying: recrystallization from AcOH followed by storage in a desiccator.

Handling, Storage, and Precautions: acute poison. Hg(OAc)2 is easily absorbed through the skin and is corrosive. Exposure to all mercury compounds is to be strictly avoided. Releases toxic Hg fumes when heated to decomposition. Protect from light.


Electrophilic Hg2+ is capable of attacking alkenic double bonds to effect Markovnikov addition,3 typically with anti stereochemistry (eq 1).4,5 However, syn attack can be enforced if the anti-face is severely hindered;4 thus norbornene,5 trans-cyclooctene,6 and trans-cyclononene6 give syn addition products.6 Solvomercuration occurs in hydroxylic solvents (water or alcohols)1,7,8 except when t-BuOH is utilized.7 Using HgII salts with less nucleophilic anions (e.g. CF3CO2-) improves the yields of the solvomercuration products.7 In the presence of Cl2 or Br2, the HgX group in the original adduct is replaced by halogen.7 Peroxymercuration of alkenes occurs in the presence of peroxides.9 Methoxymercuration of alkynes10 or allenes11 in methanol gives mercurated vinyl ethers (eq 2),10 whereas vinyl acetates are formed in AcOH.12 Mercury(II) acetate also catalyzes the perborate or MoO5.HMPA-mediated oxidation of terminal alkynes to a-acetoxy ketones (eq 3).13

Although mercuration exhibits features common to most electrophilic additions,14 it differs in details. Thus the rate-limiting step for mercuration is the cleavage of the intermediate mercuronium ion by a nucleophile; in contrast, bromination proceeds by the rate-limiting formation of the bromonium ion.15

Mercuration is very sensitive to steric factors in which it parallels hydroboration.16 The following reactivity of alkenes has been observed: terminal disubstituted > terminal monosubstituted > internal disubstituted >> trisubstituted > tetrasubstituted (eq 4);17 cis-alkenes are more reactive than their trans counterparts17 and enol ethers are much more reactive than any other alkene.18 Attempted asymmetric mercuration in the presence of cyclodextrin or in chiral micelles has only been partly successful, giving 3-55% ee; in one case the ee was 96%.19

Neighboring group participation can be employed to construct cyclic structures such as tetrahydrofurans and tetrahydropyrans3c,20-22 (eqs 5 and 6),3c,20,21 spiroacetals (eq 7),23 lactones,24 and cyclic peroxides,25 or to introduce a hydroxy group stereoselectively.26 4-Pentynoic acid reacts with (AcO)2Hg to produce a-angelicalactone (eq 8).27 A neighboring ether or hydroxy group can steer the approach of Hg2+ to the double bond by coordination and thus exercise a relatively high degree of stereocontrol (up to 93% de).28

The adducts can be demercurated by hydrides (e.g. Sodium Borohydride)1 or sulfur compounds (1,3-Propanedithiol or Sodium Trithiocarbonate)29,30 so that the method can be used as a formal addition of ROH across a double bond. While the hydride reduction may result in inversion (4:1), predominant retention of configuration (20:1) has been reported for the latter method.29,30 The hydride reduction proceeds via a C-centered radical which can be trapped in a number of ways, e.g. by addition across an electron-deficient double bond31-34 (eqs 9 and 10),31,32 or by oxygen.35 The latter method (O2/NaBH4) replaces HgX with OH.1,36 Transmetalation of organomercurials by palladium is another option.1,36

On treatment with bromine, NBS, NBA, or KBr3, organomercurials are converted into the corresponding halides37 (in a nonstereoselective fashion38). If applied to a,b-unsaturated acids,37a,b this reaction can be employed as a key step for the synthesis of serine or threonine (eq 11).39

Amino- and Amidomercuration.

Amino alkenes can similarly be cyclized by (AcO)2Hg to afford various nitrogen heterocycles22b,d,e,40 via a 5- or 6-(N)n-exo-trig pathway (eq 12).41 This method has also been applied to the synthesis of indoles.42 An interesting intra/intermolecular version has been developed for the stereoselective synthesis of piperidines (eq 13).43,44

Intramolecular amidomercuration is another variation on the same theme32-34,35d,45 which works even with b-lactams (eq 14).46 Intermolecular amidomercuration can be accomplished in acetonitrile through a Ritter-type reaction.47

Unsaturated oximes also undergo a ring-closure reaction on treatment with (AcO)2Hg to produce nitrones which can be trapped via a [3 + 2] cycloaddition (eq 15).48

3-Alken-1-ynes undergo catalytic aminomercuration in the presence of (AcO)2Hg or HgCl at elevated temperatures to produce enamines.49 By contrast, propargylic alcohols (HC&tbond;CCH2OH) undergo oxidative aminomercuration to afford bis-aminated aldehydes, e.g. (Z)-PhNHCH=C(NHPh)CH=O.50 Catalytic aminomercuration of protected propargylic alcohols gives enamines, CH2=C(NR12)CH2OR2, as the result of a regioselective Markovnikov addition-demercuration.51 Dipropargyl ethers produce aminofurans.51

Polyene Cyclization.

Treatment of dienes or trienes with (AcO)2Hg triggers cyclization analogous to the Johnson polyene cyclizations.52,53 The HgX group in the resulting cyclic organomercurial can best be eliminated to afford the corresponding alkene by photochemically induced transmetalation with Diphenyl Diselenide followed by standard selenoxide elimination.54 Allenes with another alkenic bond can also be employed in this cyclization.55 By contrast, 1,4-cyclohexadiene gives a mixture of mono- and bis-methoxymercurated products with no transannular C-C bond formation.56

Addition of Alcohols to Vinyl Ethers.

Vinyl ethers such as CH2=CHOEt undergo a formal exchange reaction with another alcohol in the presence of (AcO)2Hg, which occurs via elimination of EtOH from the intermediate.1,57 Acetals can also be isolated from this reaction.18,58 Similar reactions occur with vinyl esters (e.g. vinyl acetate)59 and vinyl thioethers.60 Ketone trimethylsilyl enolates give a-mercurio ketones61 which are capable of the Boron Trifluoride Etherate-catalyzed aldol condensation with aldehydes;62 the reaction exhibits a high degree of syn stereoselectivity, comparable with that obtained from the Zr or Ti enolates.61

Mercuration of Enamines.

Enamines react with (AcO)2Hg in DMF to give intermediate iminium salts (R12N+=CHC(HgOAc)R2R3), which are reduced with NaBH4 to afford the corresponding tertiary amines R12NCH2CHR2R3 (50-90%).63

Ring Opening of Cyclopropanes.

The cleavage of cyclopropanes with HgII occurs34,64 predominantly with inversion of configuration at the carbon attacked by Hg2+ (corner opening)65,66 and nucleophiles such as AcO- or MeOH are incorporated in the product (eq 16).65 Peroxides can also be employed as nucleophiles to produce the corresponding organic peroxides.67 Cyclopropenes are either opened on treatment with (AcO)2Hg to produce allylic acetates68 or undergo addition across the C=C bond (if the cleavage is suppressed by an electron-withdrawing group).69

Allylic Oxidation.

At higher temperatures (typically 70-150 °C), alkenes are oxidized with (AcO)2Hg to give allylic acetates (eq 17; the Treibs reaction)70,71 or dienes;72 the yields vary in the range 20-70%.73 Similarly, enolizable ketones and carboxylic acids undergo a-acetoxylation, but the yield seldom surpasses other methods.70 Certain alkenes are oxidized to a,b-unsaturated ketones.74

Mercuration of Aromatics.

Being an electrophile, (AcO)2Hg effects aromatic electrophilic substitution of reactive aromatics.75 A strong o-directing effect of groups capable of coordination with Hg2+ has been observed. Thus, for instance, on treatment with (AcO)2Hg in boiling water followed by NaCl quenching, phenol affords exclusively o-chloromercuriophenol (eq 18).76 Mercuration of the following aromatics and heteroaromatics37c,d has been described: acetanilide77 and its derivatives,78 aromatic Schiff bases,79 3,4,5-trimethoxybenzoic acid,80 estradiol,81 a-phenylpyridine,82 furan,83 furfuryl diacetate,84 pyrrole,83,85 thiophene,86 1,3-thiazole,87 indole,88 pyrimidines,89 pyridazines,90 diazines,91 trithiadiazepine,92 ferrocene,93 tricarbonyl(h-cyclobutadiene)iron,94 pentamethylruthenocene,95 NiII, PdII, and PtII porphyrins,96 and others.1 Since organomercurials RHgX are readily converted to the corresponding bromide RBr on reaction with Br2, HgII salts can serve as effective catalysts in aromatic bromination.97 An indirect route to mercurioaromatics ArHgOAc is by transmetalation of the corresponding silyl98 or stannyl99 derivatives (ArSiMe3 or ArSnBu3) with (AcO)2Hg.98 The resulting organomercurials can be further transmetalated with borane.98,99 Reversed transmetalation of organoboranes with (AcO)2Hg (R1BR22 -> R1HgX) has also been described.100

Mercuriaromatics are coupled to give bisaryl derivatives on catalytic reaction with PdCl2101 or [Rh(CO)2Cl2]2LiCl102,103 in a process similar to Ullmann coupling.

Dehydrogenation of Tertiary Amines.

Tertiary amines react with HgII to generate iminium salts (eq 19), which on treatment with base are converted into enamines.104 Alternatively, the iminium intermediate can be trapped by an internal nucleophile (eq 19).105 The reaction is improved by adding ethylenediaminetetraacetic acid (EDTA).106

Miscellaneous Reactions.

(AcO)2Hg has been found to oxidize a-amino ketones to a-dicarbonyl compounds (50-95%),107 to effect cis -> trans isomerization of alkene,108 to induce hydrolysis of vinyl chlorides to the corresponding ketones (a modification of the Wichterle reaction),109 to mediate Koenigs-Knorr-type reactions (in analogy to Ag+),110 to oxidize b-aminocyclohexenones to m-aminophenols,111 to hydrate nitriles (to give primary amides),112 to effect oxidative degradation of penicillins,113 and to mediate Claisen rearrangement.114 Trialkylboranes R3B, obtained by hydroboration of alkenes, react with (AcO)2Hg and I2 to afford terminal acetates ROAc; this is an alternative to the usual H2O2/OH- oxidation.115 This B -> Hg -> OAc transformation has also been accomplished with vinylic substrates.100b On treatment with (AcO)2Hg in MeOH followed by demercuration with KSCN, cinnamyl esters PhCH=CHCH2OCOR undergo cleavage to furnish PhCH(OMe)CH=CH2 (eq 20). The reaction is catalyzed by HNO3 (apparently, mercury(II) nitrate is the reactive species) and can be used for protection-deprotection of carboxylic acids.116

Related Reagents.

Mercury(II) Acetate-Ethylenediaminetetraacetic Acid; Mercury(II) Acetate-Sodium Trimethoxyborohydride; Mercury(II) Nitrate; Mercury(II) Perchlorate; Mercury(II) Trifluoroacetate; Thallium(III) Acetate; Thallium(III) Trifluoroacetate.

1. (a) Larock, R. C. AG(E) 1978, 17, 27. (b) Larock, R. C. T 1982, 38, 1713. (c) Larock, R. C. Organomercury Compounds in Organic Synthesis; Springer: Berlin, 1985. (d) Larock, R. C. Solvomercuration/Demercuration Reactions in Organic Synthesis; Springer: Berlin, 1986. (e) Jerkunica, J. M.; Traylor, T. G. OSC 1988, 6, 766.
2. Kitching, W. Organomet. Chem. Rev. 1968, 3, 61.
3. (a) Brown, H. C.; Geoghegan, P., Jr. JACS 1967, 89, 1522. (b) Brown, H. C.; Hammar, W. J. JACS 1967, 89, 1524. (c) Brown, H. C.; Kawakami, J. H.; Ikegami, S. JACS 1967, 89, 1525. (d) Brown, H. C.; Geoghegan, P. Jr., JOC 1970, 35, 1844. (e) Brown, H. C.; Geoghegan, P. J., Jr.; Kurek, J. T.; Lynch, G. J. Organomet. Chem. Synth. 1970, 1, 7. (f) Brown, H. C.; Kurek, J. T.; Rei, M.-H.; Thompson, K. L. JOC 1984, 49, 2551. (g) Shul'man, A. I.; Mikhailova, N. P.; Sarkisov, Yu. S.; V'yunov, K. A. ZOR 1988, 24, 2342. (h) Skorobogatova, E. V.; Sokolova, T. N.; Malisova, N. V.; Kartashov, V. R.; Zefirov, N. S. ZOR 1986, 22, 2150.
4. (a) Senda, Y.; Kamiyama, S.; Imaizumi, S. JCS(P1) 1978, 530. (b) Chatt, J. CRV 1951, 48, 7. (c) Kartashov, V. R.; Sokolova, T. N.; Skorobogatova, E. V.; Bazhenov, D. V.; Roznyatovskii, V. A. ZOR 1987, 23, 2245. (d) Kartashov, V. R.; Sokolova, T. N.; Skorobogatova, E. V.; Grishin, Yu. K.; Bazhenov, D. V.; Roznyatovskii, V. A.; Koz'min, A. S.; Zefirov, N. S. IZV 1987, 1914. (e) Kartashov, V. R.; Sokolova, T. N.; Vasil'eva, O. V.; Timofeev, I. V.; Grishin, Yu. K.; Bazhenov, D. V.; Zefirov, N. S. ZOR 1990, 26, 1800.
5. (a) Traylor, T. G.; Baker, A. W. JACS 1963, 85, 2746. (b) Traylor, T. G. JACS 1964, 86, 244. (c) Michael, J. P.; Blom, N. F.; Glintenkamp, L.-A. JCS(P1) 1991, 1855. (d) Kartashov, V. R.; Sokolova, T. N.; Timofeev, I. V.; Grishin, Yu. K.; Bazhenov, D. V.; Zefirov, N. S. ZOR 1991, 27, 2077. (e) Lambert, J. B.; Emblidge, R. W.; Zhao, Y. JOC 1994, 59, 5397.
6. Waters, W. L.; Traylor, T. G.; Factor, A. JOC 1973, 38, 2306.
7. (a) Brown, H. C.; Rei, M.-H. JACS 1969, 91, 5646. (b) Barluenga, J.; Martínez-Gallo, J. M.; Nájera, C.; Yus, M. CC 1985, 1422. (c) Barluenga, J.; Martínez-Gallo, J. M.; Nájera, C.; Yus, M. JCR(S) 1986, 274.
8. (a) Khomutov, A. R.; Khurs, E. N.; Khomutov, R. M. Bioorg. Khim. 1988, 14, 385 (CA 1989, 110, 212 973j). (b) Kuznetsova, T. S.; Kozhushkov, S. I.; Lukin, K. A.; Grishin, Yu. K.; Bazhenov, D. V.; Koz'min, A. S.; Zefirov, N. S. ZOR 1991, 27, 78.
9. (a) Bloodworth, A. J.; Bowyer, K. J.; Mitchell, J. C. JOC 1987, 52, 1124. (b) Bloodworth, A. J.; Spencer, M. D. JOM 1990, 386, 299. (c) Bloodworth, A. J.; Chan, K. H.; Cooksey, C. J.; Hargreaves, N. JCS(P1) 1991, 1923. (d) Courtneidge, J. L.; Bush, M. JOM 1992, 437, 57.
10. (a) Bassetti, M.; Floris, B. JOC 1986, 51, 4140. (b) Bassetti, M.; Floris, B.; Spadafora, G. JOC 1989, 54, 5934. (c) Bassetti, M.; Bocelli, G. CC 1990, 257. (d) Kartashov, V. R.; Sokolova, T. N.; Grishin, Yu. K.; Bazhenov, D. V.; Zefirov, N. S. Metalloorg. Khim. 1992, 5, 969 (CA 1993, 118, 39 103r).
11. Pasto, D. J.; Sugi, K. D. JOC 1991, 56, 4157.
12. (a) Bach, R. D.; Woodard, R. A.; Anderson, T. J.; Glick, M. D. JOC 1982, 47, 3707. (b) Kartashov, V. R.; Sokolova, T. N.; Malisova, N. V.; Skorobogatova, E. V.; Grishin, Yu. K.; Roznyatovskii, V. A.; Bazhenov, D. V.; Zefirov, N. S. ZOR 1986, 22, 2232. (c) Kartashov, V. R.; Sokolova, T. N.; Skorobogatova, E. V.; Chernov, A. N.; Bazhenov, D. V.; Grishin, Yu. K.; Ustynyuk, Yu. A.; Zefirov, N. S. ZOR 1989, 25, 1846. (d) Kartashov, V. R.; Sokolova, T. N.; Grishin, Yu. K.; Bazhenov, D. V.; Zefirov, N. S. ZOR 1990, 26, 1126.
13. (a) Reed, K. L.; Gupton, J. T.; McFarlane, K. L. SC 1989, 19, 2595. (b) Ballistreri, F. P.; Failla, S.; Tomaselli, G. A.; Curci, R. TL 1986, 27, 5139.
14. (a) Lewis, A.; Azoro, J. TL 1979, 3627. (b) Cabaleiro, M. C.; Ayala, A. D.; Johnson, M. D. JCS(P2) 1973, 1207.
15. Vardhan, H. B.; Bach, R. D. JOC 1992, 57, 4948.
16. (a) Nelson, D. J.; Cooper, P. J.; Coerver, J. M. TL 1987, 28, 943. (b) Broughton, H. B.; Green, S. M.; Rzepa, H. S. CC 1992, 998. (c) For an earlier work, see: Takaishi, N.; Fujikura, Y.; Inamoto, Y. JOC 1975, 40, 3767.
17. (a) Brown, H. C.; Geoghegan, P. J., Jr. JOC 1972, 37, 1937. (b) Brown, H. C.; Geoghegan, P. J., Jr.; Lynch, G. J.; Kurek, J. T. JOC 1972, 37, 1941. (c) Sakai, M. TL 1973, 347. (d) Morisaki, M.; Rubio-Lightbourn, J.; Ikekawa, N. CPB 1973, 21, 457. (e) Link, C. M.; Jansen, D. K.; Sukenik, C. H. JACS 1980, 102, 7798.
18. (a) Carnevale, G.; Davini, E.; Iavarone, C.; Trogolo, C. JOC 1988, 53, 5343. (b) Carnevale, G.; Davini, E.; Iavarone, C.; Trogolo, C. JCS(P1) 1990, 989.
19. (a) Rao, K. R.; Sampathkumar, H. M. SC 1993, 23, 1877. (b) Zhang, Y.; Bao, W.; Dong, H. SC 1993, 23, 3029. (c) Micelles also increase nucleophile selectivity: Livneh, M.; Sutter, J. K.; Sukenik, C. N. JOC 1987, 52, 5039.
20. Coxon, J. M.; Hartshorn, M. P.; Mitchell, J. W.; Richards, K. E. CI(L) 1968, 652.
21. Larock, R. C.; Harrison, L. W. JACS 1984, 106, 4218.
22. (a) Hill, C. L.; Whitesides, G. M. JACS 1974, 96, 870. (b) Spéziale, V.; Roussel, J.; Lattes, A. JHC 1974, 11, 771. (c) Grundon, M. F.; Stewart, D.; Watts, W. E. CC 1975, 772. (d) Spéziale, V.; Amat, M.; Lattes, A. JHC 1976, 13, 349. (e) Benhamou, M.-C.; Etemad-Moghadam, G.; Spéziale, V.; Lattes, A. JHC 1978, 15, 1313. (f) Pougny, J.-R.; Nassr, M. A. M.; Sinaÿ, P. CC 1981, 375. (g) Hanessian, S.; Kloss, J.; Sugawara, T. JACS 1986, 108, 2758. (h) Amate, Y.; García-Granados, A.; López, F. A.; de Buruaga, A. S. S 1991, 371. (i) Barrero, A. F.; Sánchez, J. F.; Altarejos, J.; Perales, A.; Torres, R. JCS(P1) 1991, 2513. (j) Boschetti, A.; Nicotra, F.; Panza, L.; Russo, G. JOC 1988, 53, 4181. (k) Kraus, G. A.; Li, J.; Gordon, M. S.; Jensen, J. H. JOC 1995, 60, 1154.
23. (a) Kitching, W.; Lewis, J. A.; Fletcher, M. T.; DeVoss, J. J.; Drew, R. A. I.; Moore, C. J. CC 1986, 855. (b) DeVoss, J. J.; Jamie, J. F.; Blanchfield, J. T.; Fletcher, M. T.; O'Shea, M. G.; Kitching, W. T 1991, 47, 1985.
24. Ture&cbreve;ek, F. CCC 1982, 47, 858.
25. Bloodworth, A. J.; Tallant, N. A. CC 1992, 428.
26. Ward, J.; Börner, A.; Kagan, H. B. TA 1992, 3, 849.
27. (a) Amos, R. A.; Katzenellenbogen, J. A. JOC 1978, 43, 560. For general hydration of alkynes to produce ketones, see: (b) Myddleton, W. W.; Barrett, A. W.; Seager, J. H. JACS 1930, 52, 4405. (c) Koulkes, M. BSF(2) 1953, 402. (d) Kagan, H. B.; Marquet, A.; Jacques, J. BSF(2) 1960, 1079.
28. (a) Thaisrivongs, S.; Seebach, D. JACS 1983, 105, 7407. (b) Giese, B.; Bartman, D. TL 1985, 26, 1197.
29. (a) Gouzoules, F. H.; Whitney, R. A. TL 1985, 26, 3441. (b) Gouzoules, F. H.; Whitney, R. A. JOC 1986, 51, 2024.
30. Bartlett, P. A.; Adams, J. L. JACS 1980, 102, 337.
31. (a) Giese, B.; Heuck, K. CB 1979, 112, 3759. (b) Giese, B.; Heuck, K. TL 1980, 21, 1829. (c) Giese, B.; Heuck, K. CB 1981, 114, 1572. (d) Giese, B.; Heuck, K.; Lüning, U. TL 1981, 22, 2155. (e) Kozikowski, A. P.; Nieduzak, T. R.; Scripko, J. OM 1982, 1, 675. (f) Giese, B.; Horler, H.; Zwick, W. TL 1982, 23, 931. (g) Giese, B.; Horler, H. T 1985, 41, 4025. (h) Giese, B. Radicals in Organic Synthesis; Pergamon: Oxford, 1986.
32. (a) Danishefsky, S.; Chackalamannil, S.; Uang, B.-J. JOC 1982, 47, 2231. (b) Danishefsky, S.; Taniyama, E.; Webb, R. R. TL 1983, 24, 11. (c) Danishefsky, S.; Taniyama, E. TL 1983, 24, 15.
33. (a) Carruthers, W.; Williams, M. J.; Cox, M. T. CC 1984, 1235. (b) Kahn, M.; Devens, B. TL 1986, 27, 4841. (c) Dasaradhi, L.; Bhalerao, U. T. SC 1987, 17, 1845. (d) Weinges, K.; Sipos, W. CB 1988, 121, 363.
34. (a) Giese, B.; Horler, H.; Zwick, W. TL 1982, 23, 931. (b) Giese, B.; Horler, H. TL 1983, 24, 3221. (c) Giese, B.; Zwick, W. CB 1982, 115, 2526. (d) Giese, B.; Zwick, W. CB 1983, 116, 1264. (e) Giese, B.; Hasskerl, T.; Lüning, U. CB 1984, 117, 859. (f) Giese, B.; Gröninger, K. TL 1984, 25, 2743. (g) Giese, B. AG(E) 1985, 24, 553. (h) Barluenga, J.; Yus, M. CRV 1988, 88, 487. (i) See ref. 31(h).
35. (a) Quirk, R. P. JOC 1972, 37, 3554. (b) Quirk, R. P.; Lea, R. E. TL 1974, 1925. (c) Quirk, R. P.; Lea, R. E. JACS 1976, 98, 5973. (d) Takahata, H.; Bandoh, H.; Momose, T. JOC 1992, 57, 4401 and references cited therein.
36. (a) Rodeheaver, G. T.; Hunt, D. F. CC 1971, 818. (b) Hunt, D. F.; Rodeheaver, G. T. TL 1972, 3595. (c) Heumann, A.; Bäckvall, J.-E. AG(E) 1985, 24, 207. (d) Ko&cbreve;ovský, P.; &SSbreve;rogl, J.; Gogoll, A.; Hanus, V.; Polásek, M. CC 1992, 1086. (e) Walkup, R. D.; Kim, S. W.; Wagy, S. D. JOC 1993, 58, 6486. See also Ref. 38.
37. (a) Abderhalden, E.; Heyns, K. CB 1934, 67, 530. (b) Schiltz, L. R.; Carter, H. E. JBC 1936, 116, 793. (c) Perlmutter, M.; Satyamurthy, N.; Luxen, A.; Phelps, M. E.; Barrio, J. R. Appl. Radiat. Isot. 1990, 41, 801 (CA 1991, 114, 143 945v). (d) Voronkov, M. G.; Trofimova, O. M.; Chernov, N. F. IZV 1985, 2148. (e) Brady, J. H.; Redhouse, A. D.; Wakefield, B. J. JCR(S) 1982, 137.
38. Ko&cbreve;ovský, P.; &SSbreve;rogl, J.; Pour, M.; Gogoll, A. JACS 1994, 116, 186.
39. (a) Carter, H. E.; West, H. D. OSC 1955, 3, 774. (b) Carter, H. E.; West, H. D. OSC 1955, 3, 813.
40. (a) Kanne, D. B.; Ashworth, D. J.; Cheng, M. T.; Mutter, L. C. JACS 1986, 108, 7864. (b) Barluenga, J.; Aznar, F.; Fraiz, S., Jr.; Pinto, A. C. TL 1991, 32, 3205. (c) Esser, F. S 1987, 460. (d) Le Moigne, F.; Mercier, A.; Tordo, P. TL 1991, 32, 3841.
41. Saitoh, Y.; Moriyama, Y.; Hirota, H.; Takahashi, T.; Khoung-Huu, Q. BCJ 1981, 54, 488.
42. Majumdar, K. C.; De, R. N.; Saha, S. TL 1990, 31, 1207.
43. (a) Barluenga, J.; Nájera, C.; Yus, M. S 1979, 896. (b) Barluenga, J.; Villamaña, J.; Fañanás, F. J.; Yus, M. CC 1982, 355.
44. For aminomercuration of vinyl or allylsilanes, see: (a) Barluenga, J.; Jiménez, C.; Nájera, C.; Yus, M. S 1982, 414. (b) Voronkov, M. G.; Kirpichenko, S. V.; Abrosimova, A. T.; Albanov, A. I.; Keiko, V. V.; Lavrent'yev, V. I. JOM 1987, 326, 159.
45. (a) Harding, K. E.; Burks, S. R. JOC 1984, 49, 40. (b) Harding, K. E.; Marman, T. H. JOC 1984, 49, 2838. (c) Liu, P. S. JOC 1987, 52, 4717. (d) Takacs, J. M.; Helle, M. A.; Yang, L. TL 1989, 30, 1777. (e) Takacs, J. M.; Helle, M. A.; Sanyal, B. J.; Eberspracher, T. A. TL 1990, 31, 6765. (f) Amoroso, R.; Cardillo, G.; Tomasini, C. H 1992, 34, 349.
46. Aida, T.; Legault, R.; Dugat, D.; Durst, T. TL 1979, 4993.
47. Brown, H. C.; Kurek, J. T. JACS 1969, 91, 5647.
48. Grigg, R.; Hadjisoteriou, M.; Kennewell, P.; Markandu, J.; Thornton-Pett, M. CC 1992, 1388.
49. (a) Davtyan, S. Zh.; Chobanyan, Zh. A.; Badanyan, Sh. O. Arm. Khim. Zh. 1983, 36, 508 (CA 1984, 100, 67 447c). (b) Barluenga, J.; Aznar, F.; Liz, R.; Cabal, M.-P. CC 1985, 1375. (c) Barluenga, J.; Aznar, F.; Valdés, C.; Cabal, M.-P. JOC 1991, 56, 6166. (d) Barluenga, J.; Aznar, F.; Liz, R.; Cabal, M.-P. S 1986, 960.
50. Barluenga, J.; Aznar, F.; Liz, R. CC 1986, 1180.
51. (a) Barluenga, J.; Aznar, F.; Liz, R.; Postigo, C. CC 1986, 1465. (b) Barluenga, J.; Aznar, F.; Bayod, M. TL 1988, 29, 5029.
52. (a) Julia, M.; Fourneron, J.-D. TL 1973, 3429. (b) Julia, M.; Gasquez, E. C. BSF(2) 1973, 1796. (c) Julia, M.; Colomer, E.; Julia, S. BSF(2) 1966, 2397.
53. (a) Tkachev, A. V.; Mamatyuk, V. I.; Dubovenko, Zh. V. ZOR 1987, 23, 526. (b) Nishizawa, M.; Takao, H.; Kanoh, N.; Asoh, K.; Hatakeyama, S.; Yamada, H. TL 1994, 35, 5693.
54. Erion, M. D.; McMurry, J. E. TL 1985, 26, 559.
55. Delbecq, F.; Goré, J. TL 1976, 3459.
56. Beger, J.; Thomas, B.; Vogel, T.; Lang, R. JPR 1991, 333, 447.
57. (a) Rhoads, S. J.; Raulins, N. R. OR 1975, 22, 1. (b) Ziegler, F. E. ACR 1977, 10, 227. (c) Carpino, L. A. JACS 1958, 80, 599. (d) Daub, G. W.; Sanchez, M. G.; Cromer, R. A.; Gibson, L. L. JOC 1982, 47, 743. (e) McMurry, J. E.; Ko&cbreve;ovský, P. TL 1985, 26, 2171.
58. Boeckman, R. K., Jr.; Flann, C. J. TL 1983, 24, 4923.
59. (a) Swern, D.; Jordan, E. F., Jr. OSC 1963, 4, 977. (b) Watanabe, W. H.; Conlon, L. E. JACS 1957, 79, 2828. (c) Burgstahler, A. W.; Nordin, I. C. JACS 1961, 83, 198. (d) Ogiso, A.; Iwai, I. CPB 1964, 12, 820. (e) Büchi, G.; White, J. D. JACS 1964, 86, 2884. (f) Fukuda, W.; Sato, H.; Kakiuchi, H. BCJ 1986, 59, 751.
60. Davidson, A. H.; Floyd, C. D.; Lewis, C. N.; Myers, P. L. CC 1988, 1417.
61. (a) House, H. O.; Auerbach, R. A.; Gall, M.; Peet, N. P. JOC 1973, 38, 514. For the formation of the a-mercuriocarbonyl compound via a [3,3]-sigmatropic rearrangement, see: (b) Bluthe, N.; Goré, J.; Malacria, M. T 1986, 42, 1333. (c) Bluthe, N.; Malacria, M.; Goré, J. T 1984, 40, 3277.
62. Yamamoto, Y.; Maruyama, K. JACS 1982, 104, 2323.
63. Bach, R. D.; Mitra, D. K. CC 1971, 1433.
64. (a) Blossey, E. C. Steroids 1969, 14, 725. (b) Salomon, R. G.; Gleim, R. D. JOC 1976, 41, 1529. (c) Collum, D. B.; Mohamadi, F.; Hallock, J. H. JACS 1983, 105, 6882. (d) Langbein, G.; Siemann, H.-J.; Gruner, I.; Müller, C. T 1986, 42, 937. (e) Newman, M. S.; Van der Zwan, M. C. JOC 1974, 39, 1186. (f) Bandaev, S. G.; Eshnazarov, Yu. Kh.; Nasyrov, I. M.; Mochalov, S. S.; Shabarov, Yu. S. ZOR 1988, 24, 733. (g) Bandaev, S. G.; Eshnazarov, Yu. Kh.; Mochalov, S. S.; Shabarov, Yu. S.; Zefirov, N. S. Metalloorg. Khim. 1992, 5, 690 (CA 1992, 117, 251 458j). (h) Razin, V. V.; Zadonskaya, N. Yu. ZOR 1990, 26, 2342. (i) Razin, V. V.; Genaev, A. M.; Dobronravov, A. N. ZOR 1992, 28, 104. (j) Bandaev, S. G.; Mochalov, S. S.; Shabarov, Yu. S.; Zefirov, N. S. Metalloorg. Khim. 1992, 5, 604 (CA 1993, 118, 39 101p).
65. (a) Coxon, J. M.; Steel, P. J.; Whittington, B. J.; Battiste, M. A. JACS 1988, 110, 2988. (b) Coxon, J. M.; Steel, P. J.; Whittington, B. J.; Battiste, M. A. JOC 1989, 54, 1383. (c) Coxon, J. M.; Steel, P. J.; Whittington, B. I. JOC 1990, 55, 4136.
66. (a) DePuy, C. H.; McGirk, R. H. JACS 1973, 95, 2366. (b) Lambert, J. B.; Chelius, E. C.; Bible, R. H., Jr.; Hajdu, E. JACS 1991, 113, 1331. (c) For the most recent discussion, see Ref. 38.
67. (a) Bloodworth, A. J.; Lampman, G. M. JOC 1988, 53, 2668. (b) Bloodworth, A. J.; Chan, K. H.; Cooksey, C. J.; Hargreaves, N. JCS(P1) 1991, 1923. (c) Bloodworth, A. J.; Korkodilos, D. TL 1991, 32, 6953.
68. Shirafuji, T.; Nozaki, H. T 1973, 29, 77.
69. (a) Kartashov, V. R.; Skorobogatova, E. V.; Sokolova, T. N.; Vasil'eva, O. V.; Malisova, N. V.; Grishin, Yu. K.; Bazhenov, D. V.; Zefirov, N. S. ZOR 1991, 27, 1240. (b) Kartashov, V. R.; Skorobogatova, E. V.; Malisova, N. V.; Grishin, Yu. K.; Bazhenov, D. V.; Zefirov, N. S. ZOR 1991, 27, 2490.
70. (a) Treibs, W.; Bast, H. LA 1949, 561, 165. (b) Boev, V. I.; Dombrovskii, A. V. ZOB 1981, 51, 2241. (c) Grdenić, D.; Kordar-&CCbreve;olig, B.; Matković-&CCbreve;alogović, D.; Skirica, M.; Popović, Z. JOM 1991, 411, 19. (d) House, H. O.; Thompson, H. W. JOC 1961, 26, 3729. (e) Jefferies, P. R.; Macbeth, A. K.; Milligan, B. JCS 1954, 705. (f) Brenner, A.; Schinz, H. HCA 1952, 35, 1615. (g) Zalkow, L. H.; Ellis, J. W.; Brennan, M. R. JOC 1963, 28, 1705. For a review, see: (h) Arzoumanian, H.; Metzger, J. S 1971, 527. (i) Rawlinson, D. J.; Sosnovsky, G. S 1973, 567. (j) House, H. O. Modern Synthetic Reactions, 2nd ed.; Benjamin: Menlo Park, 1972; Chapter 7.
71. (a) Treibs, W.; Lucius, G.; Kögler, H.; Breslauer, H. LA 1953, 581, 59. (b) Treibs, W.; Weissenfels, M. CB 1960, 93, 1374. (c) Alkonyi, I. CB 1962, 95, 279. (d) Kergomard, A.; Tardivat, J. C.; Vuillerme, J. P. BSF 1974, 2572. (e) Sleezer, P. D.; Winstein, S.; Young, W. G. JACS 1963, 85, 1890. (f) Anderson, C. B.; Winstein, S. JOC 1963, 28, 605. (g) Rappoport, Z.; Sleezer, P. D.; Winstein, S.; Young, W. G. TL 1965, 3719. (h) Rappoport, Z.; Dyall, L. K.; Winstein, S.; Young, W. G. TL 1970, 3483. (i) Rappoport, Z.; Winstein, S.; Young, W. G. JACS 1972, 94, 2320. (j) Mrozik, H.; Eskola, P.; Fisher, M. H. JOC 1986, 51, 3058.
72. (a) Windaus, A.; Brunken, J. LA 1928, 460, 225. (b) Windaus, A.; Dithmar, K.; Mürke, H.; Suckfüll, F. LA 1931, 488, 91. (c) Windaus, A.; Riemann, U.; Zühlsdorff, G. LA 1942, 552, 135. (d) Windaus, A.; Riemann, U.; Rüggeberg, H. H.; Zühlsdorff, G. LA 1942, 552, 142. (e) Ruyle, W. V.; Jacob, T. A.; Chemerda, J. M.; Chamberlin, E. M.; Rosenburg, D. W.; Sita, G. E.; Erickson, R. L.; Aliminosa, L. M.; Tishler, M. JACS 1953, 75, 2604. (f) Saucy, G.; Geistlich, P.; Helbling, R.; Heusser, H. HCA 1954, 37, 250. (g) Barton, D. H. R.; Rosenfelder, W. J. JCS 1951, 2381.
73. (a) Mercury(II) trifluoroacetate seems to be a better choice: Reischl, W.; Kalchhauser, H. TL 1992, 33, 2451. Analogous oxidation is known for PdII and (AcO)4Pb. PdII: (b) McMurry, J. E.; Ko&cbreve;ovský, P. TL 1984, 25, 4187. (c) Heumann, A.; &AAring;kermark, B. AG(E) 1984, 23, 453. (d) Hansson, S.; Heumann, A.; Rein, T.; &AAring;kermark, B. JOC 1990, 55, 975. PbIV: (e) Whitham, G. H. JCS 1961, 2232. (f) Cooper, M. A.; Salmon, J. R.; Whittaker, D.; Scheidegger, U. JCS(B) 1967, 1259. (g) Mori, K. ABC 1976, 40, 415.
74. Blossey, E. C.; Kucinski, P. CC 1973, 56.
75. (a) Gleghorn, J. CR(C) 1986, 303, 1425. (b) Courtneidge, J. L.; Davies, A. G.; Gregory, R. S.; McGuchan, D. C.; Yazdi, S. N. CC 1987, 1192. (c) Davies, A. G.; McGuchan, D. C. OM 1991, 10, 329.
76. Whitmore, F. C.; Hanson, E. R. OSC 1941, 1, 161.
77. Bernardi, A. G 1926, 56, 337.
78. (a) Ragno, M. G 1938, 68, 738. (b) Ragno, M. G 1940, 70, 423.
79. Ding, K.; Wu, Y.; Hu, H.; Shen, L.; Wang, X. OM 1992, 11, 3849.
80. Vicente, J.; Abad, J.-A.; Sandoval, A.; Jones, P. G. JOM 1992, 434, 1.
81. Kirk, D. N.; Slade, C. J. CC 1982, 563.
82. Constable, E. C.; Leese, T. A.; Tocher, D. A. CC 1989, 570.
83. Ciusa, R.; Grilla, G. G 1927, 57, 323.
84. Scheibler, H.; Jeschke, J.; Beiser, W. JPR 1933, 136, 232.
85. (a) O'Connor, G. N.; Crawford, J. V.; Wang, C.-H. JOC 1965, 30, 4090. (b) Ganske, J. A.; Pandey, R. K.; Postich, M. J.; Snow, K. M.; Smith, K. M. JOC 1989, 54, 4801.
86. Buu-Hoï, N. P. BSF 1958, 1407.
87. Travagli, G. G 1955, 85, 926.
88. Banerji, A.; Sarkar, M. Proc. Indian Acad. Sci., Ser. Chem. Sci. 1982, 91, 247 (CA 1983, 98, 54 069w).
89. (a) Skulski, L.; Kujawa, A.; Wroczynski, P. KGS 1989, 249 (CA 1989, 111, 232 442j). (b) Skulski, L.; Kujawa, A.; Kujawa, T. M. Bull. Pol. Acad. Sci., Chem. 1988, 35, 499 (CA 1989, 110, 115 000g). (c) Skulski, L.; Baranowski, A.; Lempke, T. Bull. Pol. Acad. Sci., Chem. 1991, 39, 459 (CA 1992, 117, 171 072p).
90. Kandile, N. G.; Soliman, A. A.; El Sawi, E. A. Synth. React. Inorg. Metal-Org. Chem. 1989, 19, 779 (CA 1990, 112, 235 463y).
91. El-Sawi, E. A.; Ahmed, M. A. Acta Chim. Hung. 1987, 124, 657 (CA 1989, 110, 57 783b).
92. Rees, C. W.; Surtees, J. R. J. JCS(P1) 1991, 2945.
93. Neto, A. F.; Miller, J.; Kiyan, N. Z.; Miyata, Y. An. Acad. Bras. Cienc. 1989, 61, 419 (CA 1991, 115, 29 549q).
94. Amiet, G.; Nicholas, K.; Pettit, R. CC 1970, 161.
95. Winter, C. H.; Han, Y.-H.; Heeg, M. J. OM 1992, 11, 3169.
96. Buchler, J. W.; Herget, G. ZN(B) 1987, 42, 1003 (CA 1988, 108, 94 761x).
97. Walker, T.; Warburton, W. K.; Webb, G. B. JCS 1962, 1277.
98. (a) Moody, C. J.; Shah, P. JCS(P1) 1989, 2463. (b) Jackson, P. M.; Moody, C. J. SL 1990, 521.
99. Hylarides, M. D.; Willbur, D. S.; Hadley, S. W.; Fritzberg, A. R. JOM 1989, 367, 259.
100. (a) Hall, L. D.; Neeser, J.-R. CC 1982, 887. (b) Brown, H. C.; Larock, R. C.; Gupta, S. K.; Rajagopalan, S.; Bhat, N. G. JOC 1989, 54, 6079.
101. Larock, R. C. JOC 1976, 41, 2241.
102. (a) Larock, R. C.; Bernhardt, J. C. JOC 1977, 42, 1680. (b) Takagi, K.; Hayama, N.; Okamoto, N.; Sakakibara, Y.; Oka, S. BCJ 1977, 50, 2741.
103. For a review, see: (a) Fanta, P. E. CRV 1946, 38, 139. (b) Fanta, P. E. CRV 1964, 64, 613. (c) Bacon, R. G. R.; Hill, H. A. O. QR 1965, 19, 95. (d) Fanta, P. E. S 1974, 9. (e) Sainsbury, M. T 1980, 36, 3327.
104. (a) Leonard, N. J.; Hay, A. S.; Fulmer, R. W.; Gash, V. W. JACS 1955, 77, 439. (b) Leonard, N. J.; Fulmer, R. W.; Hay, A. S. JACS 1956, 78, 3457. (c) Leonard, N. J.; Miller, L. A.; Thomas, P. D. JACS 1956, 78, 3463. (d) Chevolot, L.; Husson, H.-P.; Potier, P. T 1975, 31, 2491. (e) Aimi, N.; Yamanaka, E.; Endo, J.; Sakai, S.; Haginiwa, J. TL 1972, 1081. (f) For a review and comparison with other isoelectronic cations (Tl3+ and Pb4+), see: Butler, R. N. CRV 1984, 84, 249.
105. (a) Wenkert, E. JACS 1962, 84, 98. (b) Kutney, J. P.; Brown, R. T.; Piers, E. JACS 1964, 86, 2286. (c) Kutney, J. P.; Brown, R. T.; Piers, E. JACS 1964, 86, 2287. (d) Kutney, J. P.; Piers, E.; Brown, R. T. JACS 1970, 92, 1700. (e) Kutney, J. P.; Piers, E.; Brown, R. T.; Hadfield, J. R. JACS 1970, 92, 1708.
106. (a) Knabe, J. AP 1959, 292, 416. (b) Knabe, J. AP 1960, 293, 121. (c) Knabe, J.; Grund, G. AP 1963, 296, 854. (d) Knabe, J.; Roloff, H. CB 1964, 97, 3452.
107. Möhrle, H.; Schittenhelm, D. CB 1971, 104, 2475.
108. Mills, J. S. JCS(C) 1967, 2514.
109. (a) Julia, M.; Blasioli, C. BSF 1976, 1941. (b) Martin, S. F.; Chou, T. TL 1978, 1943. (c) Martin, S. F.; Chou, T. JOC 1978, 43, 1027. For reviews on the Wichterle reaction, see: (d) Jung, M. E. T 1976, 32, 3. (e) Gawley, R. E. S 1976, 777.
110. (a) Thompson, A.; Wolform, M. L.; Inatome, M. JACS 1955, 77, 3160. (b) Wolform, M. L.; Groebke, W. JOC 1963, 28, 2986. (c) Ko&cbreve;ovský, P.; Pour, M. JOC 1990, 55, 5580.
111. (a) Iida, H.; Yuasa, Y.; Kibayashi, C. S 1982, 471. (b) Iida, H.; Yuasa, Y.; Kibayashi, C. TL 1982, 23, 3591.
112. Plummer, B. F.; Menendez, B. F.; Songster, M. JOC 1989, 54, 718.
113. Stoodley, R. J.; Whitehouse, N. R. JCS(P1) 1973, 32.
114. (a) Barluenga, J.; Aznar, F.; Liz, R. S 1984, 304. (b) Barluenga, J.; Aznar, F.; Liz, R.; Bayod, M. CC 1984, 1427. (c) Barluenga, J.; Aznar, F.; Liz, R.; Bayod, M. JOC 1987, 52, 5190. (d) Barluenga, J.; Aznar, F.; Fraiz, S., Jr.; Pinto, A. C. TL 1991, 32, 3205.
115. Larock, R. C. JOC 1974, 39, 834.
116. Corey, E. J.; Tius, M. A. TL 1977, 2081.

Pavel Ko&cbreve;ovský

University of Leicester, UK

Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.