Lithium Di-t-butylcuprate1


[23402-75-7]  · C8H18CuLi  · Lithium Di-t-butylcuprate  · (MW 184.75)

(t-butylating reagent which undergoes conjugate addition reactions,1,2 1,2-addition reactions,3 substitution reactions,2b,4,5 carbocupration of alkynes,6 and oxidation reactions7)

Physical Data: dark red-brown to black solution; decomposes at 25 °C.1b

Solubility: sol Et2O, THF, pentane-Et2O-Me2S (1:1:1).

Preparative Methods: prepared in situ from CuI salts (Copper(I) Iodide,1b,5 Copper(I) Bromide1b) and complexes (CuBr.SMe28a and Copper(I) Iodide-Tributylphosphine7a) under an inert atmosphere of N2 or argon in Et2O or THF. Polymer-supported t-Bu2CuLi can be prepared.9 Preparation, stability and reactivity of organolithium- and organomagnesium-derived cuprate reagents and mixed hetero-t-butylcuprate reagents have been noted.1,4c,10,11 See Lithium Dimethylcuprate for purification of CuI salts.

Handling, Storage, and Precautions: air- and moisture-sensitive. Use in a fume hood.


Lithium di-t-butylcuprate displays the typical reactivity patterns of lithium diorganocuprates (see, e.g. Lithium Di-n-butylcuprate, Lithium Diethylcuprate, Lithium Dimethylcuprate, Lithium Diphenylcuprate, Lithium Di-n-propylcuprate).

Addition Reactions.

t-Bu2CuLi reacts with a,b-alkenyl ketones1,2,9 (mechanistic studies8), chiral esters12 (in the presence of Chlorotrimethylsilane) (eq 1), sulfoxides,13 N-tosyl-1-azoalkenes,14 ketoketenimines,15 and vinylphosphonium salts16 with conjugate transfer of the t-butyl ligand. Stereoselective cis addition can be achieved in the reaction of t-Bu2CuLi with a,b-alkynyl sulfones.17 Reaction of a,b-alkynyl trifluoromethyl ketones18 with t-Bu2CuLi affords mixtures of 1,2- and 1,4-addition products with modest regiocontrol; regioselective control can be obtained with the cyanocuprate reagent. Systems with extended conjugation, such as 3-alkynyl-2-cycloalkenones, undergo 1,6-addition.19

1,2-Addition of t-Bu2CuLi to a chiral g-alkoxy-a,b-enal3 occurs with vinylogous Cram stereoselectivity in the presence of t-Butyldimethylchlorosilane. Alkylated 3,4-dihydro-b-carbolines20 can be synthesized by 1,2-addition of t-Bu2CuLi to BF3 iminium salts.

Substitution Reactions.

t-Bu2CuLi effects substitution reactions with alkyl halides,2b,4,9 a-halo ketones,4b,21 alkyl tosylates,2b,4c,5,9 acetates,22 arene sulfonyl fluorides,23 and alkenyl substrates (e.g. vinyl triflates24 in the presence of Boron Trifluoride Etherate and enol phosphates25). Simple26a and alkenyl oxiranes11,26b-d undergo substitution reactions (eq 2); however, reactions of oxiranes with t-Bu2CuLi can be complicated by the formation of reduction products11 and mixtures of SN2- and SN2-type products.26c,d

Chiral a,b-alkenyl oxazolidines27 undergo allylic substitution reactions with t-Bu2CuLi. b-Aminocyclopentenyl sulfones28 participate in stereoselective syn-SN2 substitution with t-Bu2CuLi in modest yield (eq 3). Acyl halides4b and S-2-pyridyl thioates7c participate in nucleophilic acyl substitution reactions with t-Bu2CuLi to give ketones.


Acetylene undergoes a stereoselective syn carbocupration6 with t-Bu2CuLi and can be manipulated further in subsequent additions to a,b-alkenyl sulfones29 with retention of double bond configuration.

Oxidation Reactions.

Oxidative dimerization of t-Bu2CuLi proceeds poorly.7a Oxidative coupling of amines7b with t-Bu2CuLi affords t-butylated amines. Reaction of t-Bu2CuLi with S-2-pyridyl thioates7c in the presence of O2 gives esters.

Miscellaneous Reactions.

Reduction of 1,3-thiazole-5(4H)-thiones by electron transfer pathways can occur with t-Bu2CuLi.30 A vinylic bromide31 undergoes reduction-elimination reactions with t-Bu2CuLi. t-Bu2CuLi reduces gem-dihalocyclopropyl32 derivatives to give an intermediate copper species that can be alkylated. o-Halo-1-phenylalkynes33 are reduced by t-Bu2CuLi, affording an organocopper intermediate that can undergo intramolecular carbocupration (eq 4).

Related Reagents.

Copper(I) Iodide-Tributylphosphine; Lithium t-Butoxy(t-butyl)cuprate.

1. (a) Lipshutz, B. H.; Sengupta, S. OR 1992, 41, 135. (b) Faust, J.; Froböse, R. In Gmelin Handbook of Inorganic Chemistry; Springer: Berlin, 1983; Copper, Part 2. (c) Posner, G. H. OR 1972, 19, 1. (d) Posner, G. H. OR 1975, 22, 253. (e) Posner, G. H. An Introduction to Synthesis Using Organocopper Reagents; Wiley: New York, 1980.
2. (a) Heathcock, C. H.; Germroth, T. C.; Graham, S. L. JOC 1979, 44, 4481. (b) Mandeville, W. H.; Whitesides, G. M. JOC 1974, 39, 400.
3. Arai, M.; Nemoto, T.; Ohashi, Y.; Nakamura, E. SL 1992, 309.
4. (a) Whitesides, G. M.; Fischer, W. F. Jr., San Filippo, J., Jr.; Bashe, R. W.; House, H. O. JACS 1969, 91, 4871. (b) Posner, G. H.; Whitten, C. E.; Sterling, J. J. JACS 1973, 95, 7788. (c) Bajgrowicz, J. A.; El Hallaoui, A.; Jacquier, R.; Pigiere, C.; Viallefont, P. T 1985, 41, 1833.
5. Johnson, C. R.; Dutra, G. A. JACS 1973, 95, 7777.
6. Furber, M.; Taylor, R. J. K.; Burford, S. C. TL 1985, 26, 3285.
7. (a) Whitesides, G. M.; San Filippo, J., Jr.; Casey, C. P.; Panek, E. J. JACS 1967, 89, 5302. (b) Yamamoto, H.; Maruoka, K. JOC 1980, 45, 2739. (c) Kim, S.; Lee, J. I.; Chung, B. Y. CC 1981, 1231.
8. (a) House, H. O.; Wilkins, J. M. JOC 1978, 43, 2443. (b) Wigal, C. T.; Grunwell, J. R.; Hershberger, J. JOC 1991, 56, 3759. (c) Russell, G. A.; Baik, W.; Ngoviwatchai, P.; Kim, B. H. ACS 1990, 44, 170.
9. Schwartz, R. H.; San Filippo, J., Jr. JOC 1979, 44, 2705.
10. Bergbreiter, D. E.; Killough, J. M. JOC 1976, 41, 2750.
11. Alexakis, A.; Jachiet, D.; Normant, J. F. T 1986, 42, 5607.
12. Reetz, M. T.; Kanand, J.; Griebenow, N.; Harms, K. AG(E) 1992, 31, 1626.
13. (a) Takaki, K.; Maeda, T.; Ishikawa, M. JOC 1989, 54, 58. (b) Sugihara, H.; Tanikaga, R.; Tanaka, K.; Kaji, A. BCJ 1978, 51, 655.
14. Sacks, C. E.; Fuchs, P. L. JACS 1975, 97, 7372.
15. de la Ca, Ma T.; Cristobal, B. I.; Cuadrado, P.; González, A. Ma.; Pulido, F. J. SC 1989, 19, 1039.
16.Scheuplein, S. W.; Brückner, R. CB 1991, 124, 1871.
17. Fiandanese, V.; Marchese, G.; Naso, F. TL 1978, 5131.
18. Linderman, R. J.; Lonikar, M. S. TL 1987, 28, 5271.
19. Lee, S.-H.; Shih, M.-J.; Hulce, M. TL 1992, 33, 185.
20. Nakagawa, M.; Kawate, T.; Yamazaki, H.; Hino, T. CC 1990, 991.
21. Dubois, J.-E.; Lion, C. T 1975, 31, 1227.
22. Hua, D. H.; Verma, A. TL 1985, 26, 547.
23. Frye, L. L.; Sullivan, E. L.; Cusack, K. P.; Funaro, J. M. JOC 1992, 57, 697.
24. Kant, J.; Sapino, C., Jr.; Baker, S. R. TL 1990, 31, 3389.
25. Sum, F.-W.; Weiler, L. CJC 1979, 57, 1431.
26. (a) Olah, G. A.; Wu, A. S 1990, 887. (b) Teutsch, G.; Bélanger, A. TL 1979, 2051. (c) Wieland, D. M.; Johnson, C. R. JACS 1971, 93, 3047. (d) Johnson, C. R.; Herr, R. W.; Wieland, D. M. JOC 1973, 38, 4263.
27. Berlan, J.; Besace, Y.; Pourcelot, G.; Cresson, P. T 1986, 42, 4757.
28. Hutchinson, D. K.; Fuchs, P. L. JACS 1985, 107, 6137.
29. De Chirico, G.; Fiandanese, V.; Marchese, G.; Naso, F.; Sciacovelli, O. CC 1981, 523.
30. Jenny, C.; Wipf, P.; Heimgartner, H. HCA 1986, 69, 1837.
31. Worm, A. T.; Brewster, J. H. JOC 1970, 35, 1715.
32. Kitatani, K.; Hiyama, T.; Nozaki, H. BCJ 1977, 50, 1600.
33. Crandell, J. K.; Battioni, P.; Wehlacz, J. T.; Bindra, R. JACS 1975, 97, 7171.

Christopher W. Alexander & R. Karl Dieter

Clemson University, SC, USA

Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.