Lithium Diallylcuprate1


[21500-57-2]  · C6H10CuLi  · Lithium Diallylcuprate  · (MW 152.63)

(allylating reagent; undergoes conjugate addition reactions1a,b,d and substitution reactions1a,c,d)

Alternate Name: lithium di(2-propenyl)cuprate.

Physical Data: 13C NMR d 150, 91, 24.2b

Solubility: sol THF, Et2O.

Preparative Methods: prepared in situ from CuI salts (Copper(I) Iodide2a,3a or CuI.SBu23b) under N2 or argon atmosphere (see Lithium Dimethylcuprate) and Allyllithium3a,3c which is prepared from Allyltributylstannane or Tetraallylstannane and Phenyllithium or n-Butyllithium.

Handling, Storage, and Precautions: air- and moisture-sensitive. Use in a fume hood.


Lithium diallylcuprate displays the characteristic reactivity patterns of lithium diorganocuprates (see e.g. Lithium Di-n-butylcuprate, Lithium Dimethylcuprate, Lithium Diphenylcuprate). The very high reactivity of (CH2=CHCH2)2CuLi is sometimes problematic, and allylcopper reagents can be more effective (see Allylcopper).3a

Addition Reactions.

Lithium diallylcuprate reacts with a,b-alkenyl ketones (eq 1),1,9 lactones,4 esters,5 nitriles,6 lactams (eq 2),7 and phosphonates8 with conjugate transfer of the allyl ligand. Addition of Chlorotrimethylsilane can accelerate the conjugate addition reaction and results in improved yields.9

The reagent adds stereoselectively (cis addition) to a,b-alkynoates, affording 2,5-dienoates (eq 3).10 Dienyl esters and dienyl nitriles exclusively afford 1,6-addition products in good yields.6 Diethyl 2-vinyl-1,1-cyclopropanedicarboxylate gives mixtures of 1,5- and 1,7-addition products.11 Tandem conjugate addition-enolate trapping is a powerful synthetic method, although additives12 and solvent changes are sometimes required. Conjugate addition of the reagent to ketoketenimines affords b-enamino ketones under mild reaction conditions.13 1-Alkoxycarbonylpyridinium halides undergo both 1,2- and 1,4-addition reactions, leading to regioisomeric dihydropyridines (eq 4).14 Lithium diallylcuprate reacts with a,b-enals in the presence15 of TMSCl to give the 1,2-addition products regioselectively.

Substitution Reactions.

Lithium diallylcuprate participates in substitution reactions with alkyl halides,2a carboxylates,16 and sulfonate esters.17 Secondary tosylates undergo the substitution reaction with clean inversion of configuration; the reaction is greatly facilitated when a heteroatom (e.g. O, S) is proximate to the nucleofugal substituent and elimination pathways are minimized (eq 5).18 4-Bromo-2-butenyltributylphosphonium salts undergo substitution reactions with the reagent, with formation of an ylide which can react with aldehydes to afford dienes.19 Allylic ammonium salts participate in syn-SN2 pathways with good stereo- and regioselectivity (eq 6).20

Miscellaneous Reactions.

1-Cyclooctenyl phenyl sulfones fail to undergo conjugate addition with lithium diallylcuprate, instead affording reduction products.21

Related Reagents.

Lithium Bis(1-ethoxyvinyl)cuprate; Lithium Diisopropenylcuprate; Lithium Bis(1-methoxyvinyl)cuprate; Lithium Di-(E)-1-propenylcuprate; Lithium Divinylcuprate; Lithium Divinylcuprate-Tributylphosphine.

1. (a) Lipshutz, B. H.; Sengupta, S. OR 1992, 41, 135. (b) Posner, G. H. OR 1972, 19, 1. (c) Posner, G. H. OR 1975, 22, 253. (d) Faust, J.; Froböse, R. Gmelin Handbook of Inorganic Chemistry; Springer: Berlin, 1983; Copper, Part 2.
2. (a) Whitesides, G. M.; Fischer, W. F., Jr.; San Filippo, J., Jr.; Bashe, R. W.; House, H. O. JACS 1969, 91, 4871. (b) Lipshutz, B. H.; Ellsworth, E. L.; Dimock, S. H.; Smith, R. A. J. JOC 1989, 54, 4977.
3. (a) Lipshutz, B. H.; Ellsworth, E. L.; Dimock, S. H.; Smith, R. A. J. JACS 1990, 112, 4404. (b) House, H. O.; Fischer, W. F., Jr. JOC 1969, 34, 3615. (c) Seyferth, D.; Weiner, M. A. OSC 1973, 5, 452.
4. Seebach, D.; Zimmermann, J.; Gysel, U.; Ziegler, R.; Ha, T.-K. JACS 1988, 110, 4763.
5. Bernardi, A.; Cardani, S.; Poli, G.; Scolastico, C. JOC 1986, 51, 5041.
6. Majetich, G.; Casares, A.; Chapman, D.; Behnke, M. JOC 1986, 51, 1745.
7. (a) Hanessian, S.; Ratovelomanana, V. SL 1991, 222. (b) Hanessian, S.; Ratovelomanana, V. SL 1990, 501.
8. Barbot, F.; Paraiso, E.; Miginiac, P. TL 1984, 25, 4369.
9. Corey, E. J.; Boaz, N. W. TL 1985, 26, 6019.
10. Miginiac, P.; Daviaud, G.; Gerard, F. TL 1979, 1811.
11. Daviaud, G.; Miginiac, P. TL 1972, 997.
12. Greene, A. E.; Crabbe, P. TL 1976, 4867.
13. De la Cal, M. T.; Cristobal, B. I.; Cuadrado, P.; Gonzalez, A. M.; Pulido, F. J. SC 1989, 19, 1039.
14. Courtois, G.; Al-Arnaout, A.; Miginiac, L. TL 1985, 26, 1027.
15. Chuit, C.; Foulon, J. P.; Normant, J. F. T 1981, 37, 1385.
16. (a) Hua, D. H.; Verma, A. TL 1985, 26, 547. (b) Koller, W.; Linkies, A.; Pietsch, H.; Rehling, H.; Reuschling, D. TL 1982, 23, 1545.
17. Kobayashi, T.; Ishida, N.; Hiraoka, T. CC 1980, 736.
18. Hanessian, S.; Thavonekham, B.; DeHoff, B. JOC 1989, 54, 5831.
19. Scheuplein, S. W.; Brueckner, R. CB 1991, 124, 1871.
20. Hutchinson, D. K.; Fuchs, P. L. JACS 1985, 107, 6137.
21. Hardinger, S. A.; Fuchs, P. L. JOC 1987, 52, 2739.

Shou-Yuan Lin & R. Karl Dieter

Clemson University, SC, USA

Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.