Ethyl (Phenylsulfonyl)acetate

(R = Et)

[7605-30-3]  · C10H12O4S  · Ethyl (Phenylsulfonyl)acetate  · (MW 228.27) (R = Me)

[34097-60-4]  · C9H10O4S  · Methyl Phenylsulfonylacetate  · (MW 214.26)

(for introducing (ethoxycarbonyl)methyl and (phenylsulfonyl)methyl moieties)

Physical Data: R = Et, mp 41-42,1 42-43,2 45,3 47 °C;4 bp 134-135 °C/0.01 mmHg. R = Me, bp 145 °C/0.01 mmHg.

Solubility: sol hot alcohol, benzene, diethyl ether; practically insol water.

Preparative Methods: prepared either by the substitution reaction of sodium benzenesulfinate3 or Amberlyst A-26 benzenesulfinate4 with ethyl chloroacetate or by reaction of the sodium salt of ethyl acetoacetate with benzenesulfonyl chloride.5

Utilization in Organic Synthesis.

The methylene group of ethyl (phenylsulfonyl)acetate (hereafter, abbreviated as EPSA) is more acidic than that of ethyl (phenylthio)acetate. Therefore EPSA generates a stable anion on its methylene carbon.6 The Knoevenagel-type condensation with an aromatic aldehyde (eq 1),7 the Michael-type addition to an a,b-unsaturated ester (eq 2),8 the insertion reaction of a diazo compound,9 and the condensation with DMF dimethyl acetal10 can be applied to the chemistry of EPSA to give various phenylsulfonyl-containing compounds. The EPSA anion reacts with N-alkylisatoic anhydrides to yield phenylsulfonyl-substituted quinoline derivatives (eq 3).11

The anion of EPSA can react with an alkyl halide to give a mono- or dialkylated product (eq 4).12,13 The most effficient method for alkylation of EPSA is the reaction of a p-allyl palladium complex with the EPSA anion (eq 5).14 The introduced (ethoxycarbonyl)(phenylsulfonyl)methyl moiety is a synthetic precursor for many kinds of functionality such as (ethoxycarbonyl)methyl, (phenylsulfonyl)methyl, hydroxymethyl, and formylmethyl.

Synthetic Utilization of Methyl (Phenylsulfonyl)acetate as a Methyl Analog of EPSA.

Methyl (phenylsulfonyl)acetate (hereafter, abbreviated as MPSA) is prepared by the reaction of sodium benzenesulfinate with methyl chloroacetate in DMF.15 In an analogous manner to EPSA, MPSA undergoes Michael-type addition to a,b-unsaturated lactones (eq 6)16 or sulfones.17

MPSA is also monoalkylated on the methylene carbon under a variety of conditions (NaOMe/MeOH,18 NaH/THF,19 NaH/DMF,20-22 NaH/DMSO,23 NaH/HMPA,22 DBU/benzene24). The anion of MPSA reacts with a p-allyl palladium complex to provide a useful method for C-C bond formation between MPSA and allyl acetates (eq 7).25 Other methods for generating p-allyl palladium complexes are also available (eqs 8 and 9).26 The combination of these C-C bond formations serves as a synthetic method for constructing various cyclic compounds (eqs 6 and 10).16,18,20-22,27

Iodo-substituted MPSA is utilized in an atom-transfer radical addition to an alkene. Thus the iodo derivative of allylated MPSA undergoes the atom-transfer radical cyclization with allylamine to form a bicyclo[3.3.0]octane (eq 11).28


1. Otto, R. JPR 1884, 30, 343.
2. Ashley, W. C.; Shriner, R. L. JACS 1932, 54, 4410.
3. Michael, A.; Comey, A. M. JACS 1882, 5, 116.
4. Manescalchi, F.; Orena, M.; Savoia, D. S 1979, 445.
5. Huppatz, J. L. AJC 1971, 24, 653.
6. Barchiesi, E.; Bradamante, S.; Ferraccioli, R.; Pagani, G. A. JCS(P2) 1990, 375.
7. Gairns, R. S.; Moody, C. J.; Rees, C. W. JCS(P1) 1986, 501.
8. Ohtsuka, Y.; Niitsuma, S.; Tadokoro, H.; Hayashi, T.; Oishi, T. JOC 1984, 49, 2326.
9. Abdelhamid, A. O.; Hassaneen, H. M.; Shawali, A. S. JHC 1985, 22, 453.
10. Takahashi, M.; Mamiya, T.; Wakao, M. JHC 1986, 23, 77.
11. Coppola, G. M.; Hardtmann, G. E. JHC 1979, 16, 1605.
12. Takeuchi, Y.; Nagata, K.; Koizumi, T. JOC 1989, 54, 5453.
13. Takahashi, M.; Suzuki, H.; Kata, Y. BCJ 1985, 58, 765.
14. (a) Hirao, T.; Enda, J.; Ohshiro, Y.; Agawa, T. TL 1981, 22, 3079. (b) Curran, D. P.; Suh, Y.-G. TL 1984, 25, 4179. (c) Capobianco, M.; Mezzina, E.; Savoia, D.; Tagliavini, E.; Trombini, C.; Umani-Ronchi, A. TL 1986, 27, 1387.
15. Beck, G.; Günther, D. CB 1973, 106, 2758.
16. (a) Marshall, J. A.; Andrews, R. C. TL 1986, 27, 5197. (b) Marshall, J. A.; Andrews, R. C.; Lebioda, L. JOC 1987, 52, 2378.
17. Padwa, A.; Yeske, P. E. JOC 1991, 56, 6386.
18. Fournet, G.; Balme, G.; Gore, J. T 1990, 46, 7763.
19. Padwa, A.; Ishida, M.; Muller, C. L.; Murphree, S. S. JOC 1992, 57, 1170.
20. Fournet, G.; Balme, G.; Gore, J. T 1991, 47, 6293.
21. Trost, B. M.; Verhoeven, T. R. TL 1978, 2275.
22. Trost, B. M.; Verhoeven, T. R. JACS 1980, 102, 4743.
23. Grieco, P. A.; Zelle, R. E.; Lis, R.; Finn, J. JACS 1983, 105, 1403.
24. Fujii, M.; Nakamura, K.; Mekata, H.; Oka, S.; Ohno, A. BCJ 1988, 61, 495.
25. (a) Trost, B. M.; Chan, D. M. T. JACS 1980, 102, 6359. (b) Baer, H. H.; Hanna, Z. S. CJC 1981, 59, 889. (c) Zhu, J.; Lu, X. TL 1987, 28, 1897. (d) Deardorff, D. R.; Linde, R. G., II; Martin, A. M.; Shulman, M. J. JOC 1989, 54, 2759. (e) Thompson, W. J.; Tucker, T. J.; Schwering, J. E.; Barnes, J. L. TL 1990, 31, 6819. (f) Colobert, F.; Genet, J.-P. TL 1985, 26, 2779. (g) Trost, B. M.; Verhoeven, T. R. JACS 1980, 102, 4730.
26. (a) Djahanbini, D.; Cazes, B.; Gore, J. T 1987, 43, 3441. (b) Stolle, A.; Salaün, J.; de Meijere, A. TL 1990, 31, 4593. (c) Trost, B. M.; Molander, G. A. JACS 1981, 103, 5969. (d) Trost, B. M.; Verhoeven, T. R. JACS 1978, 100, 3435. (e) Trost, B. M.; Weber, L.; Strege, P.; Fullerton, T. J.; Dietsche, T. J. JACS 1978, 100, 3426. (f) Trost, B. M.; Weber, L.; Strege, P. E.; Fullerton, T. J.; Dietsche, T. J. JACS 1978, 100, 3416. (g) Hütter, P.; Winter, W.; Handschuh, D.; Voelter, W. LA 1981, 2045. (h) Fournet, G.; Balme, G.; Gore, J. T 1988, 44, 5809.
27. (a) Fournet, G.; Balme, G.; Barieux, J. J.; Gore, J. T 1988, 44, 5821. (b) Ahmar, M.; Cazes, B.; Gore, J. T 1987, 43, 3453. (c) Trost, B. M.; Warner, R. W. JACS 1983, 105, 5940.
28. Flynn, D. L.; Zabrowski, D. L.; Nosol, R. TL 1992, 33, 7281.

Katsuyuki Ogura

Chiba University, Japan



Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.