Di(N-succinimidyl) Oxalate

[57296-03-4]  · C10H8N2O8  · Di(N-succinimidyl) Oxalate  · (MW 284.20)

(forms active ester with N-protected amino acids for peptide synthesis,1 succinimide/glutarimide synthesis,7 as activated carriers for analysis, enzyme immobilization, and chromatographic chiral stationary phases preparation;8 curing agent in photographic sensitive materials9)

Alternate Name: DSO.

Physical Data: mp 245-247 °C (dec).

Solubility: acetonitrile (5 g/100 mL suspension).

Form Supplied in: solid; 85-98%+, dependent on supplier.

Handling, Storage, and Precautions: moisture sensitive; irritating to eyes, respiratory system, and skin; harmful by inhalation, in contact with skin, and if swallowed.

Peptide Synthesis.1

Unlike N-Hydroxysuccinimide, N-protected amino acids can be reacted directly with DSO to produce an ester and either gaseous or water-soluble byproducts. The ester can then be used to form peptides (Scheme 1).

This reagent is part of a family of oxalates, all of which give similarly high yields.1 They are more convenient than the standard 1,3-Dicyclohexylcarbodiimide coupling method for active ester and peptide syntheses. They are also more economical than the related compounds N,N-Disuccinimidyl Carbonate2 and N-succinimidyl diphenyl phosphate,3 which have been used previously as active ester and peptide synthesis reagents.

Succinimide and Glutarimide Synthesis.

Conventional glutarimide syntheses proceed via the dehydration of either glutaric acids4 or ammonium glutarates,5 or by the pyrolysis of bisglutarimides.6 All these methods give poor yields (10-40%), although corresponding succinimide syntheses do work better.7 The use of DSO, however, provides a more general route to these and other cyclic systems and the yields are typically around 80% (eq 1).7


1. Takeda, K.; Sawada, I.; Suzuki, A.; Ogura, H. TL 1983, 24, 4451.
2. Ogura, H.; Kobayashi, T.; Shimizu, K.; Kawabe, K.; Takeda, K. TL 1979, 4745.
3. Ogura, H.; Nagai, S.; Takeda, K. TL 1980, 21, 1967.
4. (a) Phillips, D. D.; Acitelli, M. A.; Mienwald, J. JACS 1957, 79, 3517. (b) Paris, G.; Berlinquet, L.; Gaudry, R. OSC 1963, 4, 496. (c) Murakoshi, I.; Kidoguchi, E.; Nakamura, M.; Haginiwa, J.; Ohmiya, S.; Higashiyama, K.; Otomasu, H. Phytochemistry 1981, 20, 1725.
5. (a) Hoey, G. B.; Lester, C. T. JACS 1951, 73, 4473. (b) Lawes, B. C. JACS 1960, 83, 6413. (c) Hall, H. K., Jr.; Schneider, A. K. JACS 1958, 81, 6409. (d) Schneider, W.; Götz, H. Pharmazie 1961, 294, 506.
6. (a) Stetter, H.; Hennig, H. CB 1955, 88, 789. (b) Stetter, H.; Merten, R. CB 1957, 90, 868.
7. Kometani, T.; Fitz, T.; Watt, D. S. TL 1986, 27, 919 and references therein.
8. Ogura, H.; Takeda, K.; Iwaki, K.; Yoshida, S.; Futamara, N.; Kinoshita, T. CA 1989, 111, 195 406c.
9. (a) Takamukai, Y.; Hanyu, T. CA 1989, 112, 108 471z. (b) Takamukai, Y. CA 1989, 112, 188 924n.

Greg J. Sarnecki

University of Cambridge, UK



Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.