Dipotassium Tetrachloroplatinate(II)1


[10025-99-7]  · Cl4K2Pt  · Dipotassium Tetrachloroplatinate(II)  · (MW 415.08)

(homogeneous hydrogen isotope exchange catalyst;2 selective oxidative functionalization of alkane C-H bonds;3 used for the synthesis of various platinum complexes)

Physical Data: dark red crystals; d 3.38 g cm-3.

Solubility: sol H2O (0.93 g/100 mL at 15 °C, 5.3 g/100 mL at 100 °C); insol ethanol, acetone.

Form Supplied in: solid; widely available. Drying: at 120 °C/0.1 mmHg for 24 h.

Handling, Storage, and Precautions: should be stored in the absence of moisture; irritating to skin, eyes, and respiratory organs; corrosive.

Hydrogen Isotope Exchange Catalyst.

Aromatic and aliphatic compounds undergo exchange of isotopic hydrogen with a catalytic amount of this reagent. This system is valuable for labeling compounds with deuterium and/or tritium in one step and constitutes the homogeneous equivalent of the well-known heterogeneous platinum technique. A wide range of compounds, including alkanes,4 cycloalkanes,5 saturated carboxylic acids,6 benzoic acid,7 benzyl alcohol,8 b-phenylpropionic acid,9 phenylalanine, phenylglycine,10 and tyrosine11 have been D and/or T labeled using this technique (see also Disodium Tetrachloroplatinate(II)).

Functionalization of Saturated Hydrocarbons.

K2PtCl4 or the combination K2PtCl4/K2PtCl6 in aqueous medium is often used for the selective oxidation of isolated C-H bonds of saturated hydrocarbons (see also Disodium Tetrachloroplatinate(II)). Ethane can be selectively oxidized to acetic or glycolic acid.12 Tetrahydrofuran is oxidized to g-butyrolactone (eq 1),13 and isovaleric acid to g-valerolactone (eq 2).14


The reaction of 1,2-diamines and similar ligands with K2PtCl4 is widely used for the synthesis of cisplatin analogs, powerful antitumor agents (eq 3).15

Alkenes,16 including ethylene,17 and dienes,18 readily coordinate with K2PtCl4, forming complexes (eq 4). These complexes readily undergo displacement reactions with free alkene in the solution.19

A number of aromatic and heteroaromatic compounds, substituted with suitable donor ligands, undergo cycloplatination reactions when treated with K2PtCl4 (eq 5).20

1. (a) Gmelin Handbook of Inorganic Chemistry; Springer: Berlin, 1986; Pt suppl. Vol. Al, pp 299-308. (b) Hartley, F. R. The Chemistry of Platinum and Palladium; Wiley: New York, 1973. (c) Chemistry of the Platinum Group Metals; Hartley, F. R.; Ed.; Elsevier: Amsterdam, 1991.
2. James, B. R. Homogeneous Hydrogenation; Wiley: New York, 1973.
3. Shilov, A. E. Activation of Saturated Hydrocarbons by Transition Metal Complexes; Reidel: Dordrecht, 1984.
4. Kramer, P. A.; Masters, C. JCS(D) 1975, 849.
5. (a) Littlecott, G. W.; McQuillin, F. J. TL 1973, 5013. (b) Masters, C. CC 1972, 1258. (c) Hodges, R. J.; Webster, D. E.; Wells, P. B. JCS(A) 1971, 3230.
6. Colfer, P. A.; Foglia, T. A.; Pfeffer, P. E. JOC 1979, 44, 2573.
7. Kanska, M.; Kanski, R. J. Radioanal. Nucl. Chem. 1992, 162, 179.
8. Gold, V.; Gould, S. E.; Reuben, D. M. E. JCS(P2) 1974, 1873.
9. Kanska, M.; Kanski, R. J. Radioanal. Nucl. Chem. 1992, 157, 125.
10. Kanska, M. J. Radioanal. Nucl. Chem. 1988, 125, 183.
11. Kanska, M.; Drabarek, S. Radiochem. Radioanal. Lett. 1980, 44, 207.
12. Sen, A.; Lin, M. CC 1992, 508.
13. Sen, A.; Lin, M.; Kao, L. C.; Hutson, A. C. JACS 1992, 114, 6385.
14. Kao, L. C.; Sen, A. CC 1991, 1242.
15. Pasini, A.; Zunino, F. AG(E) 1987, 26, 615.
16. Masters, C.; Kramer, P. A. RTC 1975, 94, 25.
17. Chock, P. B.; Halpern, J.; Paulik, F. E. Inorg. Synth. 1990, 28, 349.
18. (a) Tayim, H. A.; Mahmoud, F. T. JOM 1975, 92, 107. (b) Bhagwat, M. M.; Devaprabhakara, D. JOM 1973, 52, 425. (c) Tayim, H. A.; Bouldoukian, A.; Kharboush, M. Inorg. Nucl. Chem. Lett. 1972, 8, 231.
19. Joy, J. R.; Orchin, M. JACS 1959, 81, 305.
20. (a) Constable, E. C.; Henney, R. P. G.; Raithby, P. R.; Sousa, L. R. AG 1991, 103, 1401. (b) Nonoyama, M. ICA 1989, 157, 9.

Valeri Martichonok

University of Toronto, Ontario, Canada

Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.