[68837-61-6]  · C12H13NOS  · S,S-Diphenylsulfilimine  · (MW 219.33) (anhydrous)

[36744-90-8]  · C12H11NS  · S,S-Diphenylsulfilimine  · (MW 201.31)

(nucleophilic imino transfer reagent;2-5 one-step conversion of aldehydes to nitriles;6,7 synthesis of nitrogen compounds from N-substituted diphenylsulfilimines;8-11 synthetic intermediate for organic sulfur compounds12-17)

Physical Data: mp 70-71 °C; pKa 8.56.2

Solubility: slightly sol H2O, hexane; sol alcohol, benzene, THF, chloroform, acetone.

Form Supplied in: white needles; commercially available.

Analysis of Reagent Purity: IR: S=N 940 cm-1 (monohydrate), 910 cm-1 (anhydrous); titration.

Purification: the sulfilimine is dissolved in 3% aqueous sulfuric acid. The aq solution is treated with charcoal and then made alkaline under ice-cooling to precipitate the sulfilimine, which is recrystallized from benzene or benzene-hexane.

Handling, Storage, and Precautions: for most purposes the monohydrate is utilized without dehydration; store in the dark; storage at rt for several months causes a smell of diphenyl sulfide; decomposes at 100 °C without solvent; anhydrous sulfilimine is hygroscopic; use in a fume hood.

Nucleophilic Imino Transfer Reagent.

Conjugate addition of Ph2SNH to b-substituted a,b-unsaturated ketones gives the imino transfer products, N-unsubstituted 2-acylaziridines or 2-acyl-1-aminoethylenes (enamines) or both compounds (eqs 1-3).2-5 Optically active 2-acylaziridines can be synthesized using optically active S-(o-methoxyphenyl)-S-phenylsulfilimine by asymmetric induction.2

S,S-Diphenyl-N-(2-benzoylethenyl)sulfilimines, obtained from addition with benzoylalkynes, undergo pyrolysis to afford 3-substituted 5-phenylisoxazoles in good yields (eq 4).3

One-Step Synthesis of Nitriles.

Treatment of Ph2SNH with aliphatic and aromatic mono- and dialdehydes affords the corresponding nitriles in high yields (eq 5).6,7

N-Substituted Diphenylsulfilimines.

By alkylation8 and acylation,1,3 Ph2SNH can readily be converted to the corresponding N-substituted sulfilimines, which have been further utilized for synthesis of various nitrogen-containing compounds3 by pyrolysis and reactions with other electrophilic reagents (eqs 6-9).8-11

Synthetic Intermediate for Organic Sulfur Compounds.

N-Unsubstituted diarylsulfilimines are the most convenient reagents for the synthesis of diarylsulfoximines and sulfonediimines, which are aza analogs of sulfones and have interesting pharmacological properties. Treatment of the sulfilimines with Sodium Hypochlorite in aqueous methanol and then with aqueous Sodium Hydroxide results in the formation of the corresponding sulfoximines in high yields (eq 10).12 Synthesis of N-tosylsulfonediimines can only be performed by the reaction of the sulfilimine with dry Chloramine-T and the dry sodium salt of tosylamide in dry MeCN (eq 11).12,13 N-Unsubstituted sulfonediimines are prepared directly from the sulfilimines with t-Butyl Hypochlorite and liquid NH3 via N-halosulfilimines15 (eq 12).14

The alkaline hydrolysis of N-halosulfilimines15 in aqueous MeOH forms an unusual type of organic sulfur compound, S,S-diphenyl-S-methoxythiazyne, which is readily converted to the sulfoximine upon treatment with aqueous acid (eq 13).16 With Tetra-n-butylammonium Fluoride the N-bromosulfilimine is also converted to S,S-diphenyl-S-fluorothiazyne, which is further converted to the corresponding S-alkoxythiazynes by sodium alkoxides and to S-aminothiazynes by cyclic secondary amines.17

1. (a) Yoshimura, T.; Omata, T.; Furukawa, N.; Oae, S. JOC 1976, 41, 1728. (b) Tamura, Y.; Matsushima, H.; Minamikawa, J.; Ikeda, M.; Sumoto, K. T 1975, 31, 3035. (c) Gilchrist, T. L.; Moody, C. J. CRV 1977, 77, 409. (d) Oae, S.; Furukawa, N. In Sulfilimines and Related Derivatives; Caserio, M. C., Ed.; American Chemical Society: Washington, DC, 1983.
2. Furukawa, N.; Yoshimura, T.; Ohtsu, M.; Akasaka, T.; Oae, S. T 1980, 36, 73.
3. Tamura, Y.; Sumoto, K.; Matsushima, H.; Taniguchi, H.; Ikeda, M. JOC 1973, 38, 4324.
4. Kamernitskii, A. V.; Turuta, A. M.; Istomina, Z. I.; Korobov, A. A.; El'yanov, B. S. BAU 1986, 35, 1072.
5. Buggle, K.; Fallon, B. JCR(S) 1988, 349.
6. Furukawa, N.; Fukumura, M.; Akasaka, T.; Yoshimura, T.; Oae, S. TL 1980, 21, 761.
7. Gelas-Mialhe, Y.; Vessière, R. S 1980, 1005.
8. Tamura, Y.; Matsushima, H.; Ikeda, M.; Sumoto, K. T 1976, 32, 431.
9. Yoshida, H.; Taketani, H.; Ogata, T.; Inokawa, S. BCJ 1976, 49, 3124.
10. Furukawa, N.; Fukumura, M.; Nishio, T.; Oae, S. BCJ 1978, 51, 3599.
11. Abou-Gharbia, M.; Ketcha, D. M.; Zacharias, D. E.; Swern, D. JOC 1985, 50, 2224.
12. Furukawa, N.; Akutagawa, K.; Yoshimura, T.; Oae, S. S 1982, 77.
13. Furukawa, N.; Akutagawa, K.; Yoshimura, T.; Akasaka, T.; Oae, S. S 1979, 289.
14. (a) Georg, G.; Haake, M. S 1983, 919. (b) Haake, M.; Georg, G.; Fode, H.; Eichenauer, B.; Ahrens, K.-H.; Szelenyi, I. Pharm. Ztg. 1983, 128, 1529 (CA 1984, 100, 5978t).
15. Yoshimura, T.; Furukawa, N.; Akasaka, T.; Oae, S. T 1977, 33, 1061.
16. Yoshimura, T.; Tsukurimichi, E.; Kita, H.; Fujii, H.; Shimasaki, C. TL 1989, 30, 6339.
17. (a) Yoshimura T.; Kita, H.; Takeuchi, K.; Takata, E.; Hasegawa, K.; Shimasaki, C.; Tsukurimichi, E. CL 1992, 1433. (b) Yoshimura, T.; Takata, E.; Miyake, T.; Shimasaki, C.; Hasegawa, K.; Tsukurimichi, E. CL 1992, 2213.

Naomichi Furukawa

University of Tsukuba, Ibaraki, Japan

Toshiaki Yoshimura

Toyama University, Japan

Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.