[525-06-4]  · C14H10O  · Diphenylketene  · (MW 194.24)

(acylation of carboxylic acids to give mixed anhydrides;2 cycloaddition with a variety of unsaturated compounds;3 synthetic source of diphenylallenes4)

Physical Data: bp 118-120 °C/1 mmHg.

Solubility: sol benzene, THF.

Form Supplied in: not commercially available.

Preparative Methods: originally prepared by zinc reduction of a-chlorodiphenylacetyl chloride;5 oxidation of benzil monohydrazone with yellow Mercury(II) Oxide followed by thermal rearrangement of the a-diazo ketone;6 dehydrohalogenation of diphenylacetyl chloride with Triethylamine;7 debromination of a-bromodiphenylacetyl bromide by the action of Triphenylphosphine.8

Purification: vacuum distillation at 118-120 °C/1 mmHg.

Handling, Storage, and Precautions: material stored in a tightly stoppered bottle at 0 °C is stable for several weeks. Trace amounts of hydroquinone and storage under nitrogen inhibit polymerization and lead to increased stability. Given the reactivity of diphenylketene with amino acids, care should be taken to avoid skin contact.

Acylation of Carboxylic Acids.

Diphenylketene provides a neutral method for the conversion of carboxylic acids into mixed anhydrides.2 Amino acids can be transformed into activated esters through the intermediacy of these mixed anhydrides without racemization (eq 1).9

Cyclization Reactions.

Diphenylketene undergoes most of the cyclization reactions that are characteristic of ketenes.1 For example, cyclization with hexafluoroacetone leads to a b-lactone (eq 2).10 Reaction with simple alkenes leads to cyclobutanones (eq 3),11 although many of these reactions are prohibitively slow.12 Cyclizations have also been observed with numerous other functionalities, including allenes,13 alkynes,14 azides,15 diimides,16 imines,17 phosphinimides,18 phosphaalkynes,19 and 1,3-dipoles.20

Miscellaneous Reactions.

Wittig reaction of diphenylketene leads to the synthesis of allenes (eq 4).4 In fact, tetraphenylallene can be made upon heating diphenylketene in the presence of HMPA.21 Amines also react with diphenylketene; for example, reaction of 2-azabicyclo[2.2.1]hept-5-enes leads to the formation of 2-piperidinones (eq 5).22 Epoxides and oxetanes can be opened with diphenylketene and tetraphenylantimony iodide to generate g- and d-lactones in good yield (eq 6).23

Related Reagents.


1. For a general review of the chemistry of ketenes, see The Chemistry of Ketenes, Allenes and Related Compounds; Patai, S., Ed.; Wiley: New York, 1980.
2. Losse, G.; Demuth, E. CB 1961, 94, 1762.
3. Brady, W. T. In The Chemistry of Ketenes, Allenes and Related Compounds; Patai, S., Ed.; Wiley: New York, 1980; pp 279-308.
4. Wittig, G.; Haag, A. CB 1963, 96, 1535.
5. Staudinger, H. CB 1905, 38, 1735.
6. Smith, L. I.; Hoehn, H. H. OSC 1955, 3, 356.
7. Taylor, E. C.; McKillop, A.; Hawks, G. H. OSC 1988, 4, 549.
8. Darling, S. D.; Kidwell, R. L. JOC 1968, 33, 3974.
9. Elmore, D. T.; Smyth, J. Proc. Chem. Soc. 1963, 18.
10. Zubovics, Z.; Ishikawa, N. JFC 1976, 8, 43.
11. Huisgen, R.; Otto, P. CB 1969, 102, 3475.
12. Huisgen, R.; Feiler, L. A. CB 1969, 102, 3391.
13. Brook, P. R.; Harrison, J. M.; Hunt, K. CC 1973, 733.
14. Panneman, H. J.; Marx, A. F.; Arens, J. F. RTC 1959, 78, 487.
15. Ikeda, K.; L'abbé, G.; Smets, G. CI(L) 1973, 327.
16. Metzger, C.; Kurz, J. CB 1971, 104, 50.
17. Hassner, A.; Haddadin, M. J.; Levy, A. B. TL 1973, 1015.
18. Lee, K.-W.; Singer, L. A. JOC 1974, 39, 3780.
19. Märkl, G.; Kallmünzer, A.; Nöth, H.; Pohlmann, K. TL 1992, 33, 1597.
20. Kellogg, R. M. JOC 1973, 38, 844.
21. Olah, G. A.; Lin, H. C. S 1975, 537.
22. Maurya, R.; Pittol, C. A.; Pryce, R. J.; Roberts, S. M.; Thomas, R. J.; Williams, J. O. JCS(P1) 1992, 1617.
23. Fujiwara, M.; Imada, M.; Baba, A.; Matsuda, H. JOC 1988, 53, 5974.

James W. Leahy

University of California, Berkeley, CA, USA

Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.