Diphenyliodonium Chloride1

Ph2I+ Cl-

[1483-72-3]  · C12H10ClI  · Diphenyliodonium Chloride  · (MW 316.57)

(phenylation of carbanions,2-8 oxygen anions,9-16 nitrogen17-22 and sulfur groups,23-29 inorganic anions30-32)

Physical Data: mp 233-235 °C (subl).

Solubility: sol H2O, MeOH, t-BuOH, DMF/EtOH.

Form Supplied in: white solid; commercially available.

Handling, Storage, and Precautions: stable; can be stored at rt without decomposition.


A general observation concerning diphenyliodonium chloride is that other salts can be formed by anion metathesis in H2O, 90% HCO2H, or MeOH (eq 1). In most synthetic applications, Ph2ICl is equivalent to Ph2IBr.

Nucleophilic Displacement Resulting in Phenylation.

A major reaction of Ph2ICl is nucleophilic displacement according to the overall reaction in eq 2. The nucleophile may be carbon, oxygen, nitrogen, or sulfur based systems, as well as phosphorus, selenium, and tellurium.

Phenylation of Carbanions.

The following reactions of carbanions using t-butyl alcohol as solvent are representative (eqs 3-12). Among the better substrates are 1,3-dicarbonyl compounds (eqs 3, 4, 8, and 9),2,3,5 a-cyano ketones (eq 6),4 aromatic ketones (eqs 5 and 7),4 acetone enolates (eq 10),6 and nitronate ions (eqs 11 and 12).7,8

Phenylation of Oxygen Anions and Oxygen Nucleophiles.

Ph2ICl is valuable as a phenylating reagent at oxygen (Table 1).9-16 Representative examples include alkoxides,9 phenoxides,10 carboxylates,9 sulfonates,9 N-oxides,11 oximes,12,16 hydroxylamines,14,15 and nitroso compounds.13

Phenylation at Nitrogen.

Phenylation at nitrogen is not generally useful for aliphatic and aromatic amines. However, the reaction is valuable for hydroxamic acid derivatives, imides, sulfonamides, and certain other nitrogen heterocycles, as shown in Table 2.17-22

Phenylation at Sulfur.

Phenylation at sulfur is most effective for the formation of various sulfonium salts from diaryl or dialkyl sulfides (eqs 13-15).23-25

S-Phenylation of bis(4-methoxyphenyl)-2-arylthiopyrimidines has been used in the syntheses of nonsteroidal anti-inflammatory drugs (eq 16).26

Other substrates which undergo S-phenylation are p-TolSO2-Na+,18 EtOCSS-Na+,27 ArCSS-Na+,28 and R2NCSS-Na+.23 Elemental tellurium can be phenylated with Ph2IBr to yield Ph2Te,33 while Ph2Se yields Ph3Se+Br- and Ph3P yields Ph4P+Br-.34

Phenylation of Inorganic Anions.

The phenylation of inorganic anions is a useful synthetic method. The examples collected in Table 3 include nitrite,30 azide,9 cyanide,18 thiocyanate,18 fluoride,31 and sulfite.32

Related Reagents.

Triphenylbismuth Carbonate; Triphenylbismuth Dichloride.

1. (a) Koser, G. In The Chemistry of Functional Groups; S. Patai and Z. Rappoport, Eds.; Wiley: New York, 1983; Suppl. D, p 1265. (b) Varvoglis, A. The Organic Chemistry of Polycoordinated Iodine; VHC: New York, 1992; pp 207.
2. Beringer, F. M.; Forgione, P. S.; Yudis, M. D. T 1960, 8, 49.
3. Beringer, F. M.; Galton, S. A.; Huang, S. J. JACS 1962, 84, 2819.
4. Beringer, F. M.; Daniel, W. J.; Galton, S. A.; Rubin, G. JOC 1966, 31, 4315.
5. Beringer, F. M.; Forgione, P. S. JOC 1963, 28, 714.
6. Rossi, R. A.; Bunnett, J. F. JACS 1974, 96, 112.
7. Kornblum, N.; Taylor, H. J. JOC 1963, 28, 1424.
8. Park, K. P.; Clapp, L. B. JOC 1964, 29, 2108.
9. Lubinkowski, J. J.; Knapczk, J. W.; Calderon, J. L.; Petit, L. R.; McEwen, W. E. JOC 1975, 40, 3010.
10. Dibbo, A.; Stephenson, L.; Walker, T.; Warburton, W. K. JCS 1961, 2645.
11. Iijima, H.; Endo, Y.; Shudo, K.; Okamoto, T. T 1984, 40, 4981.
12. Wentrup, C.; Gerecht, B.; Laqua, D.; Briel, H.; Winter, H. W.; Reisenauer, H. P.; Winnewisser, M. JOC 1981, 46, 1046.
13. Taylor, E. C.; Inbasekaran, M. H 1978, 10, 37.
14. Cadogan, J. I. G.; Rowley, A. G. SC 1977, 7, 365.
15. Taylor, E. C.; Kienzle, F. JOC 1971, 36, 233.
16. Grubbs, E. J.; Milligan, R. J.; Goodrow, M. H. JOC 1971, 36, 1780.
17. Nesmeyanov, A. N.; Makarova, L. G.; Tostaya, T. P. T 1957, 1, 145.
18. Beringer, M. F.; Brierly, A.; Drexler, M.; Grindler, E. M.; Lumpkin, C. C. JACS 1953, 75, 2708.
19. Derappe, C.; Rips, R. CR(C) 1975, 281, 789.
20. Scheradsky, T.; Nov, E. JCS(P1) 1980, 2781.
21. Akiyama, T.; Imasaki, Y.; Kawanisi, M. CL 1974, 229.
22. McKillop, A.; Kobylecki, R. J. JOC 1974, 39, 2710.
23. Nesmeyanov, A. N.; Tostaya, T. P.; Grib, A. V.; Kirgizbaeva, S. R. IZV 1973, 1678.
24. Hori, M.; Kataoka, T.; Shimizu, H.; Tomoto, A. TL 1981, 22, 3629.
25. Crivello, J. V.; Lam, J. H. W. JOC 1978, 43, 3055.
26. Klose, W.; Schwaz, K. JHC 1982, 19, 1165.
27. Kotali, E.; Varvoglis, A. JCR(S) 1989, 142.
28. Chen, Z. C.; Jin, Y. Y.; Yang, R. Y. S 1988, 723.
29. Chen, Z.-C.; Jin, Y.-Y.; Stang, P. J. JOC 1987, 52, 4117.
30. Gronowitz, S.; Holm, B. SC 1974, 4, 63.
31. van der Puy, M. JFC 1982, 21, 385.
32. Beringer, F. M.; Falk, R. A. JCS 1964, 4442.
33. Sandin, R. B.; Christiansen, R. G.; Brown, R. K.; Kirkwood, S. JACS 1947, 69, 1550.
34. Ptitsyna, O. A.; Pudeeva, M. E.; Revtov, O. A.; DOK 1965, 165, 1158.

Robert M. Moriarty & Jerome W. Kosmeder II

University of Illinois at Chicago, IL, USA

Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.