3,5-Dinitrobenzoyl Chloride

[99-33-2]  · C7H3ClN2O5  · 3,5-Dinitrobenzoyl Chloride  · (MW 230.57)

(activation of hydroxy groups by conversion to the corresponding ester;1 preparation of 3,5-dinitrobenzoates and 3,5-dinitrobenzamides for characterization purposes3)

Physical Data: mp 69-71 °C; bp 196 °C/11 mmHg.

Solubility: sol ether; reacts with water and protic solvents.

Form Supplied in: 98% pure form as yellow solid (2% impurity as carboxylate); widely available.

Purification: recrystallization from carbon tetrachloride/petroleum ether (40-60 °C) or from benzene.

Handling, Storage, and Precautions: lachrymator; corrosive and moisture sensitive. Avoid inhalation. Store in sealed tube or under petroleum ether.

Preparation of 3,5-Dinitrobenzoates.

3,5-Dinitrobenzoates, prepared by the acylation of a hydroxy group with 3,5-dinitrobenzoyl chloride, have been utilized in solvolysis studies,1 SN2 displacement of propargylic alcohols,2 and derivatization of alcohols for characterization purposes.3,4 A variety of functional groups are stable under the benzoylation conditions (eqs 1 and 2). An alternative preparation of 3,5-dinitrobenzoates entails the direct coupling of 3,5-dinitrobenzoic acid and an alcohol using an activating reagent such as 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Hydrochloride (eq 3).2b

The 3,5-dinitrobenzoate esters of alcohols are often crystalline derivatives and have been used for characterization purposes.3 For example, selective benzoylation of the secondary hydroxy group of an isomer of 25-hydroxyvitamin D3 affords the corresponding crystalline 3,5-dinitrobenzoate derivative (eq 4).3b

The chromatographic separation of the enantiomers of alcohols, using a chiral stationary phase, is enhanced by the preparation of the corresponding 3,5-dinitrobenzoate derivatives.4

Benzoylation of Amino Groups.

3,5-Dinitrobenzamides are useful derivatives of amines for characterization purposes (eqs 5 and 6). The 3,5-dinitrobenzamides of amines have been particularly useful for the chromatographic separation of amines, amino acids, and amino alcohols using chiral stationary phases.4,5


1. (a) Friedrich, E. C.; Taggart, D. B. JOC 1978, 43, 805. (b) Francl, M. M.; Hansell, G.; Patel, B. P.; Swindell, C. S. JACS 1990, 112, 3535. (c) Sunko, D. E.; Jursic, B.; Ladika, M. JOC 1987, 52, 2299. (d) Lambert, J. B.; Wang, G.; Teramura, D. H. JOC 1988, 53, 5423.
2. (a) Fujiwara, K.; Sakai, H.; Hirama, M. JOC 1991, 56, 1688. (b) Myers, A. G.; Dragovich, P. S. JACS 1989, 111, 9130.
3. (a) Fronza, G.; Fuganti, C.; Grasselli, P.; Servi, S. JOC 1987, 52, 2086. (b) Andrews; D. R.; Barton, D. H. R.; Hesse, R. H.; Pechet, M. M. JOC 1986, 51, 4819.
4. (a) Pirkle, W. H.; Hyun, M. H. JOC 1984, 49, 3043. (b) Pirkle, W. H.; Pochapsky, T. C.; Mahler, G. S.; Corey, D. E.; Reno, D. S.; Alessi, D. M. JOC 1986, 51, 4991.
5. (a) Ito, Y.; Sawamura, M.; Kobayashi, M.; Hayashi, T. TL 1988, 29, 6321. (b) Hart, D. J.; Lee, C-S.; Pirkle, W. H.; Hyon, M-H.; Tsipouras, A. JACS 1986, 108, 6054.

Gary A. Sulikowski & Michelle M. Sulikowski

Texas A & M University, College Station, TX, USA



Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.