Dimethyl(phenyl)silane

PhMe2SiH

[766-77-8]  · C8H12Si  · Dimethyl(phenyl)silane  · (MW 136.29)

(hydrosilylating reagent; reductant in combination with acid or F-)

Physical Data: bp 157 °C/744 mmHg; d 0.889 g cm-3.

Solubility: sol common organic solvent such as chloroform, 1,2-dichloroethane, benzene, ether, acetone, dioxane, THF; insol H2O.

Form Supplied in: oil, commercially available.

Analysis of Reagent Purity: 1H NMR (CDCl3-Me4Si) d 7.6-7.4 (m, 2 H), 7.4-7.2 (m, 3 H), 4.42 (septet, J = 3.6 Hz, 1 H), 0.34 (d, J = 3.6 Hz, 6 H). 13C and 29Si NMR have also been reported.2

Preparative Method: see Benkeser and Foster.1

Purification: distillation.

Handling, Storage, and Precautions: moisture sensitive; evolves H2 when added to wet piperidine.

Diastereoselective Reduction of Carbonyl Compounds.3

Dimethyl(phenyl)silane reduces aldehyde and ketone carbonyls with the aid of fluoride ion or acid. a-Acylpropionamides, 1-aminoethyl ketones, and 1-alkoxyethyl ketones are readily converted into the corresponding b-hydroxy amides, a-amino alcohols, and a-alkoxy alcohols, respectively. The stereoselectivity is complementary and generally high: erythro (or syn) isomers are obtained with Trifluoroacetic Acid (TFA), whereas threo (or anti) isomers are obtained with fluoride ion activator (eq 1). The erythro selectivity in the acid-promoted carbonyl reduction is ascribed to a proton-bridged Cram's cyclic transition state. On the other hand, the threo selectivity in the fluoride-mediated reduction is explained in terms of the Felkin-Anh type model, wherein a penta- or hexacoordinated fluorosilicate is involved. No epimerization at the chiral center is observed during the reaction.

Hydrosilylation.4

With a transition metal catalyst, the hydrosilane adds to carbon-carbon double or triple bonds to give alkylsilanes or alkenylsilanes. Hydrosilylation of deoxydiisopropylidene-arabino-hexenopyranose (1) catalyzed by [Rh(norbornadiene)Cl]2 (Bis(bicyclo[2.2.1]hepta-2,5-diene)dichlorodirhodium) gives 6-deoxy-6-phenyldimethylsilyldiisopropylidenealtrose (2), which is desilylated by Tetra-n-butylammonium Fluoride to yield 6-deoxydiisopropylidenealtrose (3) (eq 2).5

In the presence of a Pt complex like bis(h-divinyltetramethyldisiloxane)tri-t-butylphosphineplatinum(0) (4), phenyldimethylsilane reacts with 1-butyn-3-ol to give an 8:1 mixture of alkenylsilanes (5 and 6) (eq 3). The major product 1-dimethylphenylsilyl-1-buten-3-ol (5) is separated and resolved by lipase-catalyzed esterification.6

Hydrosilylation of 1,4-bis(trimethylsilyl)-1,3-butadiyne (7) gives 1,4-bis(trimethylsilyl)-1,3-bis(dimethylphenylsilyl)-1,2-butadiene (8) (Chlorotris(triphenylphosphine)rhodium(I), 100 °C) or 1,4-bis(trimethylsilyl)-2-(dimethylphenylsilyl)-1-buten-3-yne (9) (Pt(PPh3)4, 100 °C) (eq 4) depending on the catalyst.7 The enyne (9) is considered to be a precursor of the allene (8).

Transition metal-catalyzed hydrosilylation of a,b-unsaturated ketones and aldehydes with PhMe2SiH proceeds in a 1,4-fashion to give silyl vinyl ethers, which are hydrolyzed to give ketones and aldehydes. Asymmetric 1,4-reduction has been studied using a chiral transition metal catalyst, but with little success (eq 5).8

Dimethyl (Z,Z)-2,4-hexadienedioate is hydrosilylated with PhMe2SiH/RhCl(PPh3)3 to give the 1,6-hydrosilylation product, methyl (3E)-6-methoxy-6-(phenyldimethylsilyloxy)-3,5-hexadienoate (eq 6).9

Formylsilylation.

Under a Carbon Monoxide atmosphere (1-4 MPa), silylformylation of alkynes occurs in the reaction of alkynes and PhMe2SiH to give b-silyl enals in the presence of a rhodium catalyst (eq 7).10 Terminal alkynes exclusively give products having the SiMe2Ph group at the terminal carbon. Depending on the structure of the alkyne, the isomer ratio (E/Z) varies from 0:100 to 100:0. Hydroxyl groups survive these conditions; however, in the presence of a tertiary amine, alkynols are converted into a-(dimethylphenylsilylmethylene) b-lactones (eq 8).11

Silylformylation of N-propargyl tosylamides gives normal b-silyl enal products, whereas the same reaction in the presence of 1,8-Diazabicyclo[5.4.0]undec-7-ene or Triethylamine affords a-(dimethylphenylsilyl)methylene b-lactams (eq 9).12 Propargylamines are transformed to 2-(dimethylphenylsilyl)methyl-2-propenals (eq 10).13


1. Benkeser, R. A.; Foster, D. J. JACS 1952, 74, 5314.
2. Olah, G. A.; Hunadi, R. J. JACS 1980, 102, 6989.
3. Fujita, M.; Hiyama, T. JACS 1985, 107, 8294; 1984, 106, 4629.
4. Hiyama, T.; Kusumoto, T. COS 1991, 8, 763.
5. Pegram, J. J.; Anderson, C. B. Carbohydr. Res. 1988, 184, 276.
6. Panek, J. S.; Yang, M.; Solomon, J. S. JOC 1993, 58, 1003; Heneghan, M.; Procter, G. SL 1992, 489; Ward, R. A.; Procter, G. TL 1992, 33, 3363; Lewis, L. N.; Sy, K. G.; Bryant, G. L., Jr.; Donahue, P. E. OM 1991, 10, 3750.
7. Kusumoto, T.; Ando, K.; Hiyama, T. BCJ 1992, 65, 1280. Kusumoto, T.; Hiyama, T. Rev. Heteroatom. Chem. 1994, 11, 143.
8. Ojima, I.; Hirai, K. Asymmetric Synth. 1985, 5, 102.
9. Yamamoto, K.; Tabei, T. JOM 1992, 428, C1.
10. Ojima, I.; Ingallina, P.; Donovan, R. J.; Clos, N. OM 1991, 10, 38; Matsuda, I.; Ogiso, A.; Sato, S.; Izumi, Y. JACS 1989, 111, 2332.
11. Matsuda, I.; Ogiso, A.; Sato, S. JACS 1990, 112, 6120.
12. Matsuda, I.; Sakakibara, J.; Nagashima, H. TL 1991, 32, 7431.
13. Matsuda, I.; Sakakibara, J.; Inoue, H.; Nagashima, H. TL 1992, 33, 5799.

Tamejiro Hiyama & Manabu Kuroboshi

Tokyo Institute of Technology, Yokohama, Japan



Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.