Dichlorobis(triphenylphosphine)platinum(II)-Tin(II) Chloride

(PtCl2(Ph3P)2)

[10199-34-5]  · C36H30Cl2P2Pt  · Dichlorobis(triphenylphosphine)platinum(II)-Tin(II) Chloride  · (MW 790.58) (cis)

[15604-36-1] (trans)

[14056-88-3] (SnCl2.2H2O)

[10025-69-1]  · Cl2Sn  · Dichlorobis(triphenylphosphine)platinum(II)-Tin(II) Chloride  · (MW 225.63)

(a homogeneous catalyst for hydroformylation,1 hydrogenation, and isomerization of alkenes)

Physical Data: cis-PtCl2(Ph3P)2: mp 310 °C (dec); trans-PtCl2(Ph3P)2: mp > 300 °C; SnCl2.2H2O: mp 37.7 °C (dec), bp 652 °C, d 2.710 g cm-3.

Solubility: SnCl2.2H2O sol alcohol, ether.

Form Supplied in: PtCl2(Ph3P)2: solid; SnCl2.2H2O: white crystals, widely available.

Handling, Storage, and Precautions: PtCl2(Ph3P)2: irritant, hygroscopic; SnCl2.2H2O: corrosive, toxic.

Hydroformylation.

In combination with an excess of tin(II) chloride as cocatalyst, PtCl2(Ph3P)22 catalyzes the hydroformylation1,3 of a variety of a-alkenes in high yield and selectivity (eq 1).

The yields and the selectivity for linear aldehydes depend on alkene structure, temperature, H2/CO pressure, and solvent composition. Cyclic alkenes have also been hydroformylated (e.g. cyclopentene, 79% yield). Competing alkene isomerization (ca. 7%) and reduction to the alkane (ca. 4%) are generally observed. The catalytic activity of this system has been enhanced by the use of various other ligands in place of triphenylphosphine.1,3 Good chemo- and regioselectivity can be obtained in the hydroformylation of functionalized alkenes (eq 2).4 Enantioselective hydroformylations have been achieved using chiral phosphine ligands.5

The mechanism of this hydroformylation has been investigated and some putative intermediates have been identified.6 When the reaction is carried out in ethanol in the absence of H2, terminal esters are obtained, but in low yield.7 More effective catalysts for this alkoxycarbonylation have been developed.

Hydrogenation.

This catalyst system has been utilized for the hydrogenation of nonaromatic polyalkenes to monoenes.8 The reaction proceeds via migration of the double bonds into conjugation, followed by reduction. The ability of this catalyst to place double bonds into conjugation has been exploited for the conversion of 1,5-cyclooctadiene to 1,3-cyclooctadiene, and for placing the double bonds of methyl linoleate into conjugation.9

Miscellaneous Reactions.

The catalyst system promotes the conversion of primary alkylamines to the corresponding dialkylamines.10 It has also been reported that in methanol this system rearranges steroidal allylic alcohols to the allyl methyl ethers (eq 3).11


1. Clark, H. C.; Jain, V. K. Coord. Chem. Rev. 1984, 55, 151.
2. Jensen, K. A. Z. Anorg. Allg. Chim. 1936, 229, 225.
3. (a) Hsu, C-Y.; Orchin, M. JACS 1975, 97, 3553. (b) Schwager, I.; Knifton, J. F. J. Catal. 1976, 45, 256. (c) Kawabata, Y.; Hayashi, T.; Ogata, I. CC 1979, 462. (d) Clark, H. C.; Davies, J. A. JOM 1981, 213, 503. (e) Muller, G.; Sainz, D.; Sales, J. J. Mol. Catal. 1990, 63, 173.
4. (a) Moretti, G.; Botteghi, C.; Toniolo, L. J. Mol. Catal. 1987, 39, 177. (b) Delogu, G.; Faedda, G.; Gladiali, S. JOM 1984, 268, 167.
5. (a) Parrinello, G.; Stille, J. K. JACS 1987, 109, 7122. (b) Petit, F.; Mortreux, A.; Mutez, S. TL 1988, 29, 1911.
6. (a) Pregosin, P. S.; Sze, S. N. HCA 1978, 61, 1848. (b) Ostoja Starzewski, K. A.; Pregosin, P. S. Adv. Chem. Ser. 1982, 196, 23. (c) Cavinato, G.; Toniolo, L. JOM 1983, 241, 275. (d) Graziani, R.; Cavinato, G.; Casellato, U.; Toniolo, L. JOM 1988, 353, 125. (e) Scrivanti, A.; Paganelli, S.; Matteoli, U.; Botteghi, C. JOM 1990, 385, 439.
7. Knifton, J. F. JOC 1976, 41, 793.
8. (a) Cramer, R. D.; Jenner, E. L.; Lindsey, R. V., Jr.; Stolberg, U. G. JACS 1963, 85, 1691. (b) Frankel, E. N.; Emken, E. A.; Itatani, H.; Bailar, J. C., Jr. JOC 1967, 32, 1447. (c) Tayim, H., A.; Bailar, J. C., Jr. JACS 1967, 89, 4330. (d) Frankel, E. N.; Itatani, H.; Bailar, J. C., Jr. J. Am. Oil Chem. Soc. 1972, 49, 132.
9. (a) Tayim, H. A.; Bailar, J. C., Jr. JACS 1967, 89, 3420. (b) Dejarlais, W. J.; Gast, L. E. J. Am. Oil Chem. Soc. 1971, 48, 157.
10. Tsuji, Y.; Shida, J.; Takeuchi, R.; Watanabe, Y. CL 1984, 889.
11. Ichinohe, Y.; Sakamaki, H.; Kameda, N. CL 1978, 835.

Surendra P. Singh, Venkat Krishnamurthy & Viresh H. Rawal

The Ohio State University, Columbus, OH, USA



Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.