(Diacetoxyiodo)benzene1-3

PhI(OAc)2

[3240-34-4]  · C10H11IO4  · (Diacetoxyiodo)benzene  · (MW 322.10)

(transannular carbocyclization,6 vic-diazide formation,7 a-hydroxy dimethyl acetal formation,8,10,11,13 oxetane formation,9 chromone, flavone, chalcone oxidation,11,12 arene-Cr(CO)3 functionalization,14 phenolic oxidation16 and coupling,17,18 lactol fragmentation,19 iodonium ylides and intramolecular cyclopropanation,20 oxidation of amines24-28 and indoles,30,31 hydrazine derivatives (diimide32 and azodicarbonyls33) and radical type intramolecular oxide formation44-46).

Alternate Names: phenyliodine(III) diacetate; DIB; iodobenzene diacetate; IBD.

Physical Data: mp 163-165 °C.

Solubility: sol AcOH, MeCN, CH2Cl2; in KOH or NaHCO3/MeOH it is equivalent to PhI(OH)2.

Form Supplied in: commercially available as a white solid.

Preparative Method: by reaction of iodobenzene with Peracetic Acid.4,5

Purification: recrystallization from 5 M acetic acid.4

Handling, Storage, and Precautions: a stable compound which can be stored indefinitely.

Reactions with Alkenes.

Reactions of simple alkenes with PhI(OAc)2 are not synthetically useful because of formation of multiple products.

Transannular carbocyclization in the reaction of cis,cis-1,5-cyclooctadiene yields a mixture of three diastereomers of 2,6-diacetoxy-cis-bicyclo[3.3.0]octane, a useful precursor of cis-bicyclo[3.3.0]octane-2,6-dione (eq 1).6

PhI(OAc)2/NaN3/AcOH yields vicinal diazides (eq 2).7

Oxidation of Ketones to a-Hydroxyl Dimethyl Acetals.

Ketones are converted to the a-hydroxy dimethyl acetal upon reaction with PhI(OAc)2 in methanolic potassium hydroxide (eqs 3-5).8

Several potentially oxidizable groups are unaffected in this reaction (eq 6).13

In the case of a 17a-hydroxy steroid the hydroxy group acts as an intramolecular nucleophile to yield the 17-spirooxetan-20-one. It is noteworthy that the 3b-hydroxy-D5-system is unaffected (eq 7).9

cis-3-Hydroxyflavonone is obtained via acid-catalyzed hydrolysis of cis-3-hydroxyflavone dimethyl acetal, which is formed upon treatment of flavanone with PhI(OAc)2 (eq 8).10,11

a,b-Unsaturated ketones, such as chromone, flavone, chalcone, and flavanone, yield a-hydroxy-b-methoxy dimethyl acetal products (eqs 9-11).12a

Intramolecular participation by the ortho hydroxy group occurs in the reaction of substituted o-hydroxyacetophenones, yielding the corresponding coumaran-3-ones (eq 12).12b

Formation of the a-hydroxy dimethyl acetal occurs without reaction of the Cr(CO)3 complex of h6-benzo-cycloalkanones (eqs 13-15).14

Carbon-Carbon Bond Cleavage with PhI(OAc)2/TMSN3.

PhI(OAc)2/Azidotrimethylsilane reacts with unsaturated compounds even at -53 °C to yield keto nitriles (eq 16).15

Oxidation of Phenols.

Phenols are oxidized using PhI(OAc)2 with nucleophilic attack by solvent (eqs 17 and 18),16 or with intramolecular nucleophilic addition amounting to an overall oxidative coupling as with the bisnaphthol (eq 19)17 and also with the conversion of reticuline to salutaridine (eq 20).18

Fragmentation of Lactols to Unsaturated Medium-Ring Lactones.

Ring cleavage to form a medium-sized ring lactone with a transannular double bond has been observed (eq 21).19

Reactions with b-Dicarbonyl Systems; Formation of Iodonium Ylides; Intramolecular Cyclopropanation.

b-Dicarbonyl compounds upon reaction with PhI(OAc)2 and KOH/MeOH at 0 °C yield isolable iodonium ylides (eq 22).20 This is a general reaction which requires two stabilizing groups flanking the carbon of the C=I group, such as NO2 and SO2Ph.21 Decomposition of unsaturated analogs in the presence of Copper(I) Chloride proceeds with intramolecular cyclopropanation (Table 1).20

An asymmetric synthesis of a vitamin D ring A synthon employed this intramolecular cyclopropanation reaction (eq 23).22

Oxidation of Amines.

Aromatic amines are oxidized with PhI(OAc)2 to azo compounds in variable yield. PhI(OAc)2 in benzene oxidizes aniline in excellent yield (eq 24);23 however, substituted anilines give substantially lower yields.

Intramolecular azo group formation is a useful reaction for the formation of dibenzo[c,f]diazepine (eq 25).24,25 Other ortho groups may react intramolecularly to yield the benzotriazole (eq 26), benzofuroxan (eq 27), or anthranil (eq 28) derivatives.24-28

A number of examples of oxidative cyclization of 2-(2-pyridylamino)imidazole[1,2-a]pyridines to dipyrido[1,2-a:2,1-f]-1,3,4,6-tetraazapentalenes with PhI(OAc)2/CF3CH2OH have been reported (eq 29).29

In the case of the oxidation of indole derivatives, nucleophilic attack by solvent may occur (eq 30).30 Reserpine undergoes an analogous alkoxylation.30 In the absence of a nucleophilic solvent, intramolecular cyclization occurs, an example of which is illustrated in the total synthesis of sporidesmin A (eq 31).31

Hydrazine is oxidized by PhI(OAc)2 to diimide, which may be used to reduce alkenes and alkynes under mild conditions (Table 2).32

The hydrazodicarbonyl group is smoothly oxidized by PhI(OAc)2 to the azodicarbonyl group (eqs 32 and 33).33

An intramolecular application of this reaction was used in a tandem sequence with PhI(OAc)2 oxidation and a Diels-Alder reaction in the synthesis of nonpeptide b-turn mimetics (eq 34).34,35

Oxidation of 5-Substituted Pyrazol-3(2H)-ones; Formation of Alkynyl Esters.

Oxidation of various 5-substituted pyrazol-3(2H)-ones proceeded with fragmentative loss of molecular nitrogen to yield methyl-2-alkynoates (eq 35).36 An analogous fragmentation process with pyrazol-3(2H)-ones occurs with Thallium(III) Nitrate37,38 and Lead(IV) Acetate.39

Oxidation of Hydrazones, Alkylhydrazones, N-Amino Heterocycles, N-Aminophthalimidates, and Aldazines.

The oxidation of hydrazones to diazo compounds is not a generally useful reaction but it was uniquely effective in the oxidation of a triazole derivative (eq 36).40

Oxidation of arylhydrazones proceeds with intramolecular cyclizations (eqs 37 and 38)41 and aziridines may be formed via nitrene additions (eq 39).42

A linear tetrazane is formed in the oxidation of N-aminophthalimide (eq 40).43

(Diacetoxyiodo)benzene/Iodine is reported to be a more efficient and convenient reagent for the generation of alkoxyl radicals than PbIV, HgII, or AgI, and this system is useful for intramolecular oxide formation (eqs 41 and 42).44

Fragmentation processes of carbohydrate anomeric alkoxyl radicals45 and steroidal lactols46 using PhI(OAc)2/I2 have been reported.


1. Moriarty, R. M.; Prakash, O. ACR 1986, 19, 244.
2. Moriarty, R. M.; Vaid, R. K. S 1990, 431.
3. Varvoglis, A. The Organic Chemistry of Polycoordinated Iodine; VCH: New York, 1992; p 131.
4. Sharefkin, J. G.; Saltzman, H. OSC 1973, 5, 660.
5. Lucas, H. J.; Kennedy, E. R.; Formo, M. W. OSC 1955, 3, 483.
6. Moriarty, R. M.; Duncan, M. P.; Vaid, R. K.; Prakash, O. OSC 1992, 8, 43.
7. Moriarty, R. M.; Kamernitskii, J. S. TL 1986, 27, 2809.
8. Moriarty, R. M.; Hu, H.; Gupta, S. C. TL 1981, 22, 1283.
9. Turuta, A. M.; Kamernitzky, A. V.; Fadeeva, T. M.; Zhulin, A. V. S 1985, 1129.
10. Moriarty, R. M.; Prakash, O. JOC 1985, 50, 151.
11. Moriarty, R. M.; Prakash, O.; Musallam, H. A. JHC 1985, 22, 583.
12. (a) Moriarty, R. M.; Prakash, O.; Freeman, W. A. CC 1984, 927. (b) Moriarty, R. M.; Prakash, O.; Prakash, I.; Musallam, H. A. CC 1984, 1342.
13. Moriarty, R. M.; Prakash, O.; Thachet, C. T.; Musallam, H. A. H 1985, 23, 633.
14. Moriarty, R. M.; Engerer, S. C.; Prakash, O.; Prakash, I.; Gill, U.S.; Freeman, W. A. JOC 1987, 52, 153.
15. Zbiral, E.; Nestler, G. T 1970, 26, 2945.
16. Pelter, A.; Elgendy, S. TL 1988, 29, 677.
17. Bennett, D.; Dean, F. M.; Herbin, G. A.; Matkin, D. A.; Price, A. W. JCS(P2) 1978, 1980.
18. Szántay, C.; Blaskó, G.; Bárczai-Beke, M.; Pechy, P.; Dörnyei, G. TL 1980, 21, 3509.
19. Ochiai, M.; Iwaki, S.; Ukita, T.; Nagao, Y. CL 1987, 133.
20. Moriarty, R. M.; Prakash, O.; Vaid, R. K.; Zhao, L. JACS 1989, 111, 6443.
21. Koser, G. F. The Chemistry of Functional Groups, Supplement D; S. Patai and Z. Rappoport, Eds.; Wiley: New York, 1983; p 721.
22. Moriarty, R. M.; Kim, J.; Guo, L. TL 1993, 34, 4129.
23. Pausacker, K. H. JCS 1953, 1989.
24. Szmant, H. H.; Lapinski, R. L. JACS 1956, 78, 458.
25. Szmant, H. H.; Infante, R. JOC 1961, 26, 4173.
26. Dyall, L. K. AJC 1973, 26, 2665.
27. Dyall, L. K.; Kemp, J. E. AJC 1973, 26, 1969.
28. Pausacker, K. H.; Scroggie, J. G. JCS 1954, 4499.
29. Devadas, B.; Leonard, N. J. JACS 1990, 112, 3125.
30. Awang, D. V. C.; Vincent, A. CJC 1980, 58, 1589.
31. Kishi, V.; Nakatsura, S.; Fukuyama, T.; Havel, M. JACS 1973, 95, 6493.
32. Moriarty, R. M.; Vald, R. K.; Duncan, M. P. SC 1987, 17, 703.
33. Moriarty, R. M.; Prakash, I.; Penmasta, R. SC 1987, 17, 409.
34. Kahn, M.; Bertenshaw, S. TL 1989, 30, 2317.
35. Kahn, M.; Wilke, S.; Chen, B.; Fujita, K. JACS 1988, 110, 1638.
36. Moriarty, R. M.; Vaid, R. K.; Ravikumar, V. T.; Hopkins, T. E.; Farid, P. T 1989, 45, 1605.
37. Taylor, E. C.; Robey, R. L.; McKillop, A. AG(E) 1972, 11, 48.
38. Myrboh, B.; Ile, H.; Junjappa, H. S 1992, 1101.
39. Smith, P. A. S.; Bruckmann, E. M. JOC 1974, 39, 1047.
40. Boulton, A. J.; Devi, P.; Henderson, N.; Jarrar, A. A.; Kiss, M. JCS(P1) 1989, 1, 543.
41. Baumgarten, H. E.; Hwang, D.-R.; Rao, T. N. JHC 1986, 23, 945.
42. Schröppel, F.; Sauer, J. TL 1974, 2945.
43. Anderson, D. J.; Gilchrist, T. L.; Rees, C. W. CC 1971, 800.
44. Dorta, R. L.; Francisco, C. G.; Hernández, R.; Salazar, J. A.; Suárez, E. JCR(S) 1990, 240.
45. deArmas, P.; Francisco, C. G.; Suárez, E. AG(E) 1992, 31, 772.
46. Freire, R.; Marrero, J. J.; Rodríguez, M. S.; Suárez, E. TL 1986, 27, 383.

Robert M. Moriarty, Calvin J. Chany II, & Jerome W. Kosmeder II

University of Illinois at Chicago, IL, USA



Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.