[14285-68-8]  · C10O10Re2  · Decacarbonyldirhenium  · (MW 652.52)

(oligomerization catalyst)

Alternate Name: rhenium carbonyl.

Physical Data: mp 177 °C, 170 °C; sublimes 70 °C/0.1 mmHg.

Solubility: sparingly sol common org solvents; insol water.

Form Supplied in: colorless crystals; commercially available.

Handling, Storage, and Precautions: stable to air and to strong acids; may be stored indefinitely at ambient temperature; ignites in air above 140 °C.

Conversion to Other Rhenium Carbonyl Derivatives.

Decacarbonyldirhenium is the starting material for the synthesis of a wide range of organorhenium compounds. Many of these conversions depend on three key initial steps: oxidation by halogens to the halopentacarbonyls, XRe(CO)51 (very efficient chlorination occurs with Sulfuryl Chloride);2 reduction by sodium amalgam to Na+[Re(CO)5]-;3 and substitution of one or more carbonyl groups by other donor ligands, e.g. PPh3 to give Re2(CO)8(PPh3)2. Thus whereas tricarbonylcyclopentadienylrhenium is readily obtained directly from Re2(CO)10 and cyclopentadiene dimer,4 and the cyclohexa- and -heptadienyl analogs are prepared similarly from the corresponding dienes (eq 1),5 a wider range of substituted cyclopentadienyl complexes as well as the open-chain dienyls are available by methods employing the bromocarbonyl (eqs 2 and 3).6

The chloride or bromide is also used together with Aluminum Chloride or bromide and alkenes, dienes, and arenes to generate the cationic complexes [(alkene)Re(CO)5]+, [(diene)Re(CO)4]+, or [(arene)Re(CO)3]+ (eq 4).7

Catalytic Uses.

Both Re2(CO)10 and ClRe(CO)5 can catalyze chlorination of hydrocarbons. Catalysis of the reaction of cyclohexane with carbon tetrachloride (eq 5)8 undoubtedly involves initiation by thermal dissociation of the dinuclear carbonyl to give two &bdot;Re(CO)5 radicals followed by chlorine atom abstraction from CCl4. Surprisingly, the Re2(CO)10 or ClRe(CO)5 catalyzed reaction of toluene with SO2Cl2 yields the products of ionic chlorination, 2- and 4-chlorotoluene, and only traces of benzyl chloride.2

Decacarbonyldirhenium is more efficient than Decacarbonyldimanganese in catalyzing the selective hydrogenolysis of 1,3,3,5-tetrachloropentane (eq 6), but the reverse is true of some similar examples.9 At 230 °C it catalyzes the quantitative hydrogenation of cyclohexene or benzene to cyclohexane.10 Re2(CO)10 is also marginally better than Mn2(CO)10 (but both are inferior to Pentacarbonyliron/HMPA) as a catalyst for addition of methyl trichloroacetate to vinyltrimethylsilane (eq 7).11 The rhenium compound is substantially better than manganese carbonyl as catalyst for the addition of butanethiol to acrylonitrile (eq 8).12 A conflicting picture emerges from comparison of these catalysts for the addition of triethylsilane to alkenes. With 1-hexene, Re2(CO)10 at 145 °C causes fairly smooth addition to yield 1-hexyltriethylsilane (60-81%),13 whereas Mn2(CO)10 yields unsaturated products. Re2(CO)10 is also the more efficient catalyst in addition to methyl methacrylate, but the opposite is true in the case of methyl acrylate.14 In the presence of Lithium Chloride, rhenium carbonyl catalyzes the conversion of CO and H2 to glycol.15

Stoichiometric Reactions.

Much of the potentially synthetically useful chemistry of rhenium carbonyl consists of transformations which leave the organic fragments bound to the metal so that further reactions have to be explored before the utility of these compounds in the synthesis of metal-free organic molecules can be properly assessed. Re2(CO)10, activated by photolysis with 1-hexene, reacts stepwise with two molecules of dimethylaminopropyne, leading to their combination as shown in eq 9.16 Reaction of NaRe(CO)5 with alkynyl esters involves linkage of a CO ligand to the alkyne system (eq 10).17

Halocarbene complexes can be obtained, e.g. by the reaction of eq 11,18 and neutral carbenedicarbonylcyclopentadienylrhenium derivatives are prepared by the Fischer method (eq 12).19

With softer alkylating agents the intermediate of this reaction yields an alkyl-acyl derivative (eq 13) which, on photolysis, eliminates butane-2,3-dione.20

A neutral carbene complex, CpRe(CO)2=C=CHPh, has also been obtained by irradiation of tricarbonylcyclopentadienylrhenium with phenylacetylene.21 Cationic carbene complexes have been prepared from the NO-substituted cation [CpRe(CO)2NO]+, itself obtained from CpRe(CO)3 with NO[HSO4].22 Replacement of one CO in this cation by triphenylphosphine gives the chiral cation [CpRe(CO)(PPh3)NO]+, which has been resolved into its enantiomers.23 Replacement of the second CO by an alkene, followed by base treatment and protonation e.g. as in eq 14,24,25 yields a carbene complex isomeric with the precursor cationic alkene complex. Alkylation of the intermediate alkenylrhenium complexes also leads to carbene derivatives in some cases.25 The alternative route to these involves reaction of the cation [CpRe(CO)(PPh3)NO]+ with alkyllithium followed by hydride abstraction, as illustrated for the preparation of the parent methylene complex (eq 15). Some other alkyls (CH2R) behave analogously on hydride abstraction, but alkyls with a tertiary b-H (i.e. CH2CHR2) lose this H to give the more stable cationic alkene complexes.26 Vinylcarbene analogs are also readily available by two routes (eq 16).27

Cationic solvent complexes are formed from the neutral alkyls (or aryls) on protonation (eq 17),28 and the use of weak donor solvents (e.g. CH2Cl2 or PhCl) then allows replacement of these molecules by alkenes to give [CpRe(h2-CH2=CHR)(PPh3)NO]+ or ketones to give [CpRe(O=CR1R2)(PPh3)NO]+ salts. Reduction of homochiral salts of the latter type has yielded alkoxides with efficient asymmetric induction (eq 18).29

(Pentamethylcyclopentadienyl)tricarbonylrhenium has been converted to h2-alkene derivatives as illustrated for the propene complex (eq 19).30 Hydride abstraction followed by alkylation of the resultant h3-allyl complex with Lithium Dimethylcuprate (eq 20)31 achieves homologation of the propene ligand; other carbanions (e.g. -CH(CO2Et)2) add in similar fashion.31b

Acid-catalyzed Hydrogen Peroxide oxidation smoothly converts the tricarbonyl complex (C5Me5)Re(CO)3 to the trioxide complex (C5Me5)ReO3. This product lacks the useful alkene-hydroxylating activity of MeReO3, but has served as a source of many organorhenium(III and V) complexes.32 Reaction of the trioxide with alkynes in the presence of triphenylphosphine yields complexes which give furans on treatment with iodine (eq 21).33

Remarkably smooth formation of a hydroxycyclopentadienyl ligand has been reported to proceed according to eq 22, giving the product as a yellow oil in 84% yield.34

1. Schmidt, S. P.; Trogler, W. C.; Basolo, F. Inorg. Synth. 1990, 28, 160.
2. Davis, R.; Durrant, J. L. A.; Rowland, C. C. JOM 1986, 315, 119.
3. Beck, W.; Raab, K. Inorg. Synth. 1989, 26, 106.
4. Gogan, N. J.; De Silva, S. I. OM 1990, 9, 1970.
5. Whitesides, T. H.; Budnik, R. A. IC 1975, 14, 664.
6. de los Angeles Paz-Sandoval, M.; Powell, P. JOM 1981, 219, 81.
7. Harris, P. J.; Knox, S. A. R.; Stone, F. G. A. JOM 1978, 148, 327.
8. Davis, R.; Durrant, J. L. A.; Rowland, C. C. JOM 1986, 316, 147.
9. (a) Il'inskaya, L. V.; Kuz'mina, N. A.; Gasanov, R. G.; Chukovskaya, E. T. IZV 1987, 2253; BAU 1987, 2087. (b) Il'inskaya, L. V.; Kuznetsov, V. F.; Gasanov, R. G. IZV 1991, 927; BAU 1991, 823.
10. Ryashentseva, M. A.; Minachev, Kh. M.; Khandozhko, V. N.; Kolobova, P. E. IZV 1990, 2859; BAU 1990, 2596.
11. Kamyshova, A. A.; Chukovskaya, E. T. IZV 1989, 2615; BAU 1989, 2402.
12. Churkina, T. D.; Petrova, R. G.; Dostovalova, V. I.; Terent'ev, A. B. IZV 1989, 376; BAU 1989, 325.
13. Kuz'mina, N. A.; Il'inskaya, L. V.; Gasanov, R. G.; Chukovskaya, E. Ts.; Freidlina, R. Kh. IZV 1986, 212; BAU 1986, 195.
14. Terent'ev, A. B.; Moskalenko, M. A. IZV 1987, 1610; BAU 1987, 1488.
15. Ishino, M.; Deguchi, T.; Takano, T.; Nakamura, S. J. Mol. Catal. 1989, 49, 315.
16. (a) Adams, R. D.; Chen, G.; Yin, J. OM 1991, 10, 1278. (b) Nubel, P. O.; Brown, T. L. JACS 1982, 104, 4955.
17. Padolik, L. L.; Galluci, J.; Wojcicki, A. JOM 1990, 383, C1.
18. (a) Singh, M. M.; Angelici, R. J. IC 1984, 23, 2699. (b) Miessler, G. L.; Kim, S.; Jacobson, R. A.; Angelici, R. J. IC 1987, 26, 1690.
19. Fischer, E. O.; Riedel, A. CB 1968, 101, 156.
20. (a) Goldberg, K. I.; Bergman, R. G. OM 1987, 6, 430. (b) Goldberg, K. I.; Bergman, R. G. JACS 1989, 111, 1285.
21. Kolobova, N. E.; Antonova, A. B.; Khitrova, O. M.; Antipin, M. Yu.; Struchkov, Yu. T. JOM 1977, 137, 69.
22. Fischer, E. O.; Strametz, H. ZN(B) 1968, 23, 278.
23. (a) Merrifield, J. H.; Strouse, C. E.; Gladysz, J. A. OM 1982, 1, 1204. (b) Huang, Y.-H.; Niederkorn, F.; Arif, A. M.; Gladysz, J. A. JOM 1990, 383, 213.
24. Kowalczyk, J. J.; Arif, A. M.; Gladysz, J. A. CB 1991, 124, 729.
25. Bodner, G. S.; Smith, D. E.; Hatton, W. G.; Heah, P. C.; Georgiou, S.; Rheingold, A. L.; Geib, S. J.; Hutchinson, J. P.; Gladysz, J. A. JACS 1987, 109, 7688.
26. Bodner, G. S.; Gladysz, J. A.; Nielsen, M. F.; Parker, V. D. JACS 1987, 109, 1757.
27. Senn, D. R.; Wong, A.; Patton, A. T.; Marsi, M.; Strouse, C. E.; Gladysz, J. A. JACS 1988, 110, 6096.
28. (a) Fernandez, J. M.; Gladysz, J. A. OM 1989, 8, 207. (b) Kowalczyk, J. J.; Agbossou, S. K.; Gladysz, J. A. JOM 1990, 397, 333.
29. Dalton, D. M.; Fernández, J. M.; Emerson, K.; Larsen, R. D.; Arif, A. M.; Gladysz, J. A. JACS 1990, 112, 9198.
30. Batchelor, R. J.; Einstein, F. W. B.; Jones, R. H.; Zhuang, J.-M.; Sutton, D. JACS 1989, 111, 3468.
31. (a) Batchelor, R. J.; Einstein, F. W. B.; Zhuang, J.-M.; Sutton, D. JOM 1990, 397, 69. (b) Casey, C. P.; Yi, C. S. OM 1990, 9, 2413.
32. (a) Herrmann, W. A. AG(E) 1988, 27, 1297. (b) Herrmann, W. A.; Flöel, M.; Kulpe, J.; Felixberger, J. K.; Herdtweck, E. JOM 1988, 355, 297.
33. de Boer, E. J. M.; de With, J.; Orpen, A. G. JACS 1986, 108, 8271.
34. Ferede, R.; Hinton, J. F.; Korfmacher, W. A.; Freeman, J. P.; Allison, N. T. OM 1985, 4, 614.

Peter L. Pauson

University of Strathclyde, Glasgow, UK

Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.