Cyanotributylstannane

Bu3SnCN

[2179-92-2]  · C13H27NSn  · Cyanotributylstannane  · (MW 316.07)

(reagent for cyanation of halides; can add to aldehydes; catalyst for halosilane substitution)

Alternate Name: tributyltin cyanide.

Physical Data: mp 90-93 °C (from petroleum ether);1 93-96.5 °C (from acetonitrile).2

Solubility: sol common org solvents.

Form Supplied in: colorless solid.

Preparative Methods: originally from Tri-n-butylchlorostannane and Potassium Cyanide.1 Modified procedures using 18-Crown-62 or Lithium Cyanide3 give better yields.

Handling, Storage, and Precautions: hygroscopic, but stable under a dry atmosphere. Both cyano and alkyltin compounds are highly toxic.

Coupling with Halides.

Cyanation of vinyl or aryl halides is effectively catalyzed by palladium(0) complexes. The reaction can be applied to the synthesis of cyano homologs of nucleosides (eq 1),4 nucleoside bases,5 and cis-dihydrodiols derived from arenes.6

Aryl, vinyl, and tertiary alkyl acid halides can be cyanated by the reagent to give acyl cyanides in good yields (eq 2).2 Primary or secondary alkyl acid halides react further to afford acyl cyanide dimers.

The three-component coupling of aryl halides, cyanotributylstannane, and isocyanides takes place in the presence of palladium(0) to yield iminoacyl cyanides in moderate yields.7

Addition to Aldehydes.

Cyanohydrins are obtained by the reaction of cyanotributylstannane with aldehydes. Although a chiral titanium catalyst did not effect any asymmetric induction,8a good 1,2-diastereoselectivity was achieved in the reaction with a-amino aldehydes.8b

Catalysis of Halosilane Substitution Reactions.

A catalytic amount of cyanotributylstannane facilitates the substitution of silyl chlorides by Grignard reagents.9

Related Reagents.

Acetyl Cyanide; Cyanotrimethylsilane; Hydrogen Cyanide; Diethylaluminum Cyanide; Potassium Cyanide; Sodium Cyanide; Tri-n-butylchlorostannane; Zinc Cyanide.


1. Luijten, J. G. A.; van der Kerk, G. J. M. Investigations in the Field of Organotin Chemistry; Tin Research Institute: Greenford, 1955; p 106 (Beilstein E IV 4, p 4331).
2. Tanaka, M. TL 1980, 21, 2959.
3. Harusawa, S.; Yoneda, R.; Omori, Y.; Kurihara, T.; TL 1987, 28, 4189.
4. Nair, V.; Buenger, G. S. JACS 1989, 111, 8502; Nair, V.; Purdy, D. F.; Sells, T. B. CC 1989, 878.
5. Jixiang, C.; Crisp, G. T. SC 1992, 22, 683.
6. Boyd, D. R.; Hand, M. V.; Sharma, N. D.; Chima, J.; Dalton, H.; Sheldrake, G. N. CC 1991, 1630.
7. Kosugi, M.; Ogata, T.; Tamura, H.; Sano, H.; Migita, T. CL 1986, 1197.
8. (a) Minamikawa, H.; Hayakawa, S.; Yamada, T.; Iwasawa, N.; Narasaka, K. BCJ 1988, 61, 4379. (b) Herranz, R.; Castro-Pichel, J.; Garcia-Lopez, T. S 1989, 703.
9. Lennon, P. J.; Mack, D. P.; Thompson, Q. E. OM 1989, 8, 1121.

Masato Tanaka & Toshiyasu Sakakura

National Institute of Materials and Chemical Research, Tsukuba, Japan



Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.