3-Chloro-1-butene

[563-52-0]  · C4H7Cl  · 3-Chloro-1-butene  · (MW 90.55)

(alkylating agent15,22 and organometallic precursor useful for introduction of 2-buten-1-yl (crotyl) and 1-buten-3-yl moieties)

Physical Data: bp 63.9-64.2 °C; d 0.900 g cm-3; nD20 1.4155.

Solubility: insol water; sol all organic solvents.

Form Supplied in: colorless liquid.

Preparative Methods: from 1-buten-3-ol using PCl3/py,1 SOCl2/HMPA,2 Ph3P/CCl4,3 Ph3P/CCl3COCCl3,4 Me2CC(Cl)NMe2,5 or PO(OPh)2Cl/LiCl;6 from 2-buten-1-ol using SOCl2/FeCl3.7

Purification: by distillation.

Handling, Storage, and Precautions: stable at 0 °C in quartz;8 flammable liquid and lachrymator.9 Use in a fume hood.

Introduction.

This summary of 3-chloro-1-butene (1) chemistry focuses on the racemic reagent, although the (+)1 and (-)10 forms are known. 3-Chloro-1-butene is relatively stable at ambient temperature. However, it exists in equilibrium (eq 1)11 with 1-chloro-2-butene (Keq = 2.32; PhMe, 80 °C);8 catalysis by UV light,12 glass surfaces,8 and by Ir, Rh, and Co coordination complexes13 has been observed. Care must be taken that reactions with (1) are not complicated by the isomerization product. The thermolysis chemistry of (1) has been studied.14

The reactions of (1) in protic, dipolar aprotic, and nonpolar solvents in the presence and absence of nucleophiles (SN1, SN2, SN2, E1, E2, and SNi) have been studied extensively and reviewed.15 Friedel-Crafts alkylation of alkenes has also been studied.16 Primarily, (1) has been used for electrophilic and nucleophilic introduction of 2-buten-1-yl (crotyl) and 1-buten-3-yl groups in organic synthesis. These reactions for (1) and other allylic compounds have been reviewed.17

Electrophilic Reactions.

3-Chloro-1-butene acts as an ambident electrophile at both a (SN2) and g (SN2) positions in chloride displacement reactions. In early work, exclusive SN2 reaction was reported with various nucleophiles (NaOEt/EtOH, KOAryl/Me2CO, NaS-n-Bu/EtOH, Me4N+OAc-/Me2CO, and Kphthalimide/MeOH).15 In later studies of the regioselectivity effects of counterion and solvent (EtO-, PhS-, and (CO2Et)2CH-),18 only modest changes were observed, all reactions strongly favoring the SN2 pathway (83-95%). In contrast, the SN2 reaction is a significant or dominant pathway with Et2NH (100%),19 Me3N (70%),20 and fluorenyl anions (30-100%).21 In addition, the SN2 reaction is strongly favored with many organometallic reagents, as is illustrated by the examples given in Table 1.

Other chloride substitution reactions of (1) include the p-allyl complex reactions of Pd, Ni, and other transition metals. The PdCl2 promoted reaction of (1) with NaOAc to give a 35:65 a:g ratio of butenyl acetates is representative.28 Additional examples of palladium p-allyl complex reactions of (1) are 2,5-enyne (eq 2)29 and 1,4-diene (eq 3)30 syntheses. Both proceed with exclusive g-substitution. Interestingly, it has been found in amination studies of the palladium p-allyl complex of (1) with Me2NH that regioselectivity can be controlled by the charge on the complex.31 Thus while g-substitution is the normal product (a:g = 10:90; 100%), a-substitution is dominant (a:g = 71:22; 93%) if the reaction proceeds via a cationic complex generated by AgBF4 precipitation of chloride.

p-Allyl complex reactions of (1) with other metals are known. The nickel p-allyl complex-mediated carbonylative cycloaddition with alkynes is representative (eq 4).32

Nucleophilic Reactions.

A variety of organometallic reagents have been prepared from (1). These reagents undergo nucleophilic reactions with electrophiles at both a- and g-positions. The chemistry of allylic organometallic reagents, including those derived from (1), has recently been reviewed.33 The a:g regioselectivity can be controlled during electrolytic coupling of (1) with acetone by choice of cathode (a:g = 90:10 to 29:71).34

The reaction of 1-buten-3-ylmagnesium chloride with nitro compounds is representative of a general synthesis of secondary hydroxylamines.35 Exclusive reaction at the secondary center of (1) is observed. On the other hand, reaction of the same reagent with (ClCH2)Me2SiCl yields nearly equal amounts of a- and g-products (eq 5).36 Methoxide-induced rearrangement provides the homologation products in the same ratio.

A mixed butenyl/butyl cuprate reagent is obtained on reaction of Lithium Di-n-butylcuprate with (1). This reagent undergoes exclusive g-butenyl transfer to a vinyl phosphate (eq 6).37 In contrast, an organocopper reagent derived from (1) and Cu0 gives exclusive a-coupling with PhCHO and PhCOCl (eq 7).38 Similarly, organozinc compounds generated from (1) undergo exclusive a-coupling with aldehydes39 and aldimines.40 Interestingly, the aldehyde reaction was conducted in a two-phase aqueous/C-18 silica system, avoiding the need for an organic solvent.

Related Reagents.

Allyl Chloride; Crotyl Chloride; Methallyl Chloride.


1. Böhme, H. CB 1938, 71, 2372.
2. Normant, J. F.; Deshayes, H. BSF(2) 1972, 2854.
3. Snyder, E. JOC 1972, 37, 1466.
4. (a) Magid, R. M.; Fruchey, S. O.; Johnson, W. L. TL 1977, 2999. (b) Magid, R. M.; Fruchey, S. O.; Johnson, W. L.; Allen, T. G. JOC 1979, 44, 359.
5. Munyemana, F.; Frisque-Hesbain, A. M.; Devos, A.; Ghosez, L. TL 1989, 30, 3077.
6. Araki, S.; Ohmori, K.; Butsugan, Y. S 1984, 841.
7. Curtin, D. Y.; Gerber, S. M. JACS 1952, 74, 4052.
8. Dittmer, D. C.; Marcantonio, A. F. JOC 1964, 29, 3473.
9. The Sigma-Aldrich Library of Chemical Safety Data, 2nd ed.; Lenga, R. E., Ed.; Adrich Chemical Co.: Milwaukee, WI, 1990; Vol. 2, p 756A.
10. Young, W. G.; Caserio, F. F., Jr. JOC 1961, 26, 245.
11. (a) Kharasch, M. S.; Kritchevesky, J.; Mayo, F. R. JOC 1937, 2, 489. (b) Lane, J. F.; Fentress, J.; Sherwood, L. T., Jr. JACS 1944, 66, 545.
12. (a) Strohmeier, W. ZN(B) 1974, 29, 282. (b) Cristol, S. J.; Ilenda, C. S. TL 1976, 3681.
13. Strohmeier, W.; Eder, E. ZN(B) 1974, 29, 280.
14. Thomas, P. J. JCS(B), 1967, 1238.
15. de Wolfe, R. H.; Young, W. G. CRV 1956, 56, 753.
16. Mayr, H.; Klein, H.; Kolberg, G. CB 1984, 117, 2555.
17. Magid, R. M. T 1980, 36, 1901.
18. Czernecki, S.; Georgoulis, C. Prevost, C. BSF(2) 1970, 3088.
19. Young, W. G.; Webb, I. D.; Goering, H. L. JACS 1951, 73, 1076.
20. Young, W. G.; Clement, R. A.; Shih, C.-H. JACS 1955, 77, 3061.
21. Bordwell, F. G.; Clemens, A. H.; Cheng, J.-P. JACS 1987, 109, 1773.
22. Lajis, N. H.; Khan, M. N. T 1992, 48, 1109.
23. Yamamoto, Y.; Yamamoto, S.; Yatagai, H.; Maruyama, K. JACS 1980, 102, 2318.
24. Magid, R. M.; Nieh, E. C.; Gandour, R. D. JOC 1971, 36, 2099.
25. Tapia, I.; Alcazar, V.; Moran, J. R.; Caballero, C.; Grande, M. CL 1990, 697.
26. Orsini, F.; Pelizzoni, F.; Ricca, G. T 1984, 40, 2781.
27. Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. JOC 1988, 53, 2390.
28. Brady, D. G. CC 1970, 434.
29. Yamaguchi, R.; Kawasaki, H.; Yoshitome, T.; Kawanisi, M. CL 1982, 1485.
30. Walkup, R. D.; Guan, L. SC 1992, 22, 1007.
31. Åkermark, B.; Åkermark, G.; Hegedus, L. S.; Zetterberg, K. JACS 1981, 103, 3037.
32. Camps, F.; Coll, J.; Moreto, J. M.; Torras, J. JOC 1989, 54, 1969.
33. Yamamoto, Y.; Asao, N. CRV 1993, 93, 2207.
34. Satoh, S.; Suginome, H.; Tokuda, M. TL 1981, 22, 1895.
35. Barboni, L.; Bartoli, G.; Marcantoni, E.; Petrini, M.; Dalpozzo, R. JCS(P1) 1990, 2133.
36. Sans, E. A.; Shechter, H. TL 1985, 26, 1119.
37. Ishihara, T.; Yamana, M.; Ando, T. TL 1983, 24, 5657.
38. Rieke, R. D.; Klein, W. R.; Wu, T.-C. JOC 1993, 58, 2492.
39. Wilson, S. R.; Guazzaroni, M. E. JOC 1989, 54, 3087.
40. Imuta, M.; Itani, H.; Ona, H.; Hamada, Y.; Uyeo, S.; Yoshida, T. CPB 1991, 39, 663.

Grant E. DuBois

The Coca-Cola Company, Atlanta, GA, USA



Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.