Chloroacetyl Chloride

[79-04-9]  · C2H2Cl2O  · Chloroacetyl Chloride  · (MW 112.94)

(acylating agent;1-34 chlorinating agent;39 a two-carbon building block for cyclization;6,13,25-27,33 a precursor to monochloroketene35-38)

Physical Data: mp -22 °C; bp 105-106 °C; d 1.418 g cm-3.

Solubility: sol ether, acetone, and methylene chloride.

Form Supplied in: liquid; commercially available.

Handling, Storage, and Precautions: is corrosive and moisture sensitive. It should be used in an anhydrous atmosphere. Pure ClCH2COCl can be obtained by simple distillation of the commercial product. This reagent should be used in a fume hood.


Chloroacetyl chloride is a versatile reagent and has been extensively used in organic synthesis. It is primarily used as an acylating agent. The multi-functional nature of ClCH2COCl has made it a suitable two-carbon building block for cyclization. Numerous cyclic compounds, especially heterocycles, have been prepared through the use of the reagent. Chloroacetyl chloride is also a valuable precursor for monochloroketene and occasionally serves as a chlorinating agent.


Acylation of carbon functionalities using ClCH2COCl as an acylating reagent generally falls into two categories: acylation under Friedel-Crafts conditions and under anionic conditions. Friedel-Crafts acylation of arenes using ClCH2COCl as an acylating agent is usually carried out in CS2, nitromethane, sulfolane, etc. solution with Aluminum Chloride as a promoter, although other Lewis acids have also been employed. Benzene, toluene, naphthalene, s-hydrindacene, fluorene, and fluorenone react readily with ClCH2COCl under the reaction conditions.1 Heterocyclic arenes, phenols, and derivatives of phenols are also similarly acylated.2,3 In the case of phenols, the major acylation products are the para isomers (eq 1). However, excellent ortho regioselectivity can be achieved by combining ClCH2COCl with phenoxides of aluminum and magnesium (eq 2),4 a condition similar to that used in the Kolbe-Schmitt reaction.5

In the Friedel-Crafts reaction, both the acyl and the alkyl chloride functionalities of ClCH2COCl can react with an arene, resulting in the formation of a cyclic compound. For example, treatment of 1,2,3,4-tetrahydronaphthacene with ClCH2COCl/AlCl3 led to formation of 6-oxo-1,2,3,4,5,6-hexahydrobenz[d]aceanthrylene in 22% yield (eq 3).6a When 3,5-dimethoxytoluene is used as the substrate, a 2,3-dihydrobenzofuran-3-one is obtained almost quantitatively (eq 4).6b,c The carbonyl group of ClCH2COCl may also participate in cyclization under appropriate conditions.6d,e This behavior is illustrated by the formation of 2,7-difluoro-9-chloromethylenexanthene in the reaction of 4,4-difluorophenyl ether with ClCH2COCl under AlCl3 activation (eq 5).

The Friedel-Crafts acylation reaction of ClCH2COCl has been extended to alkenes and alkynes.7,8 When alkenes serve as substrates, addition or addition-elimination products can be obtained selectively depending on the reaction conditions. The addition-elimination reactions led to formation of a,b-unsaturated ketones (eq 6). In the case of 1,8-bis(trimethylsilyl)-2,6-octadiene acylation, using the ClCH2COCl/Titanium(IV) Chloride system at low temperature yielded chloromethylcyclopentanols (eq 7).7e When acetylene is treated with ClCH2COCl in the presence of AlCl3, 1,4-dichlorobut-3-en-2-one was obtained in 75% yield (eq 8).8a In the presence of Sodium Tetracarbonylcobaltate, alkynes were cyclized by ClCH2COCl (eq 9).8b

Organocadmium and organozinc compounds are generally the reagents of choice in the preparation of chloromethyl ketones from ClCH2COCl,9 even though Grignard reagents are sometimes also used for the preparation.10 Strong bases such as Lithium Diisopropylamide (LDA) and Lithium Hexamethyldisilazide (LHMDS) have been introduced as deprotonation agents for the C-acylation reaction of a number of enolizable carbonyl compounds.11 For the strongly acidic C-H bond of 1,3-cyclohexanedione, a weak base such as pyridine is sufficient to achieve this purpose.12 An interesting reaction involving enolate C-acylation is the synthesis of 3-furanones by organocopper conjugate addition to a,b-unsaturated ketones. Trapping of the enolate with ClCH2COCl and subsequent base-promoted ring closure offers a very simple route to the construction of a furan ring (eq 10).13


Acylation of nitrogen groups in organic compounds is the most frequently used reaction of ClCH2COCl in organic synthesis.14-28 Primary and secondary amines react readily with ClCH2COCl to form amides.14-17 In the case of diamines, both nitrogen atoms can be acylated. In fact, the diacylation has been utilized in the synthesis of cyclams17a,b and enantiomerically pure trans-2,3-diphenyl-DABCO.17 Other nitrogen containing compounds such as O,N-dimethylhydroxylamine hydrochloride,18a benzyloxyguanidine,18b hydrazines,18c and amides19 can also be acylated by ClCH2COCl, under appropriate conditions. A one-pot procedure has been developed for reductive acylation of nitro compounds to chloroacetamides.18d If both amino and hydroxyl functionalities exist in the same molecular, N-acylation generally proceeds preferentially.20

Chloroacetyl chloride is able to add across the C=N double bonds of imines to form N-chloroalkylchloroacetamide.21 These addition products generally are unstable and are used for further reaction without isolation. The C=N double bonds of imines can be reductively acylated in the presence of Trichlorosilane.21f,g The addition reaction is also applicable to carbodiimides22 and other multiply bonded heteroatom functions such as P=N and S=N.23

1,3,5-Triisopropylhexahydrotriazine can undergo ring opening with ClCH2COCl in the presence of KSCN to form N-isopropyl-N-isothiocyanatomethylchloroacetamide in 67% yield (eq 11).24

Similar to C-acylation, cyclocondensation can also proceed in N-acylation to form cyclic compounds.25 The a-chlorine atom of ClCH2COCl is also reactive in this case.

The cyclization is not limited to the formation of only C-N and C-C bonds, but can also occur through forming C-N and C-N bonds.26 This transformation was exemplified by the preparation of 3-hydroxy-1-phenylpyrido[1,2-a]pyrazinium chloride in the reaction of ClCH2COCl with phenyl(2-pyridyl)ketimine (eq 12).26b Besides the a-chlorine, the carbonyl group of ClCH2COCl can also be utilized for the cyclization.

The chlorine atom at the a position of ClCH2COCl may also be displaced by an oxygen to form a ring containing both O and N atoms.27 Cyclization of 4-amino-1-phenylisoquinolin-3-ol hydrochloride with ClCH2COCl generated 6-phenyl-2,3-dihydro-1H-[1,4]oxazino[2,3-c]isoquinolin-2-one in 40% yield (eq 13).27b

If a substrate has both N and S atoms, a heterocycle containing both atoms can be obtained upon treatment with ClCH2COCl.28 Preparation of thiazoles from thiobenzamide and ClCH2COCl has been accomplished through this process.28c


Like N-acylation, O-acylation using ClCH2COCl can be achieved either with or without a base.29-33 Acylation has been successfully carried out with various hydroxy group-containing compounds such as alcohols,29 phenols,31 and saccharides30 as substrates. Acylation of an enolate by ClCH2COCl has also been documented.32 It is reported that treatment of salicylic hydrazide with ClCH2COCl in the presence of MeSO3H yielded 4,5-dihydro-5H-1,3,4-benzoxadiazepin-5-one in 59% yield (eq 14).33


S-Acylation is a less well-studied reaction of ClCH2COCl.34 However, it has found use in the preparation of 2-oxo-1,4-dithiane and its derivatives, which can be further transformed to the analogs of tetrathiafulvalene for the study of conducting molecular solids.34b,c

Precursor to Monochloroketene.

By treatment with Et3N, ClCH2COCl loses HCl to yield monochloroketene.35-38 The ketene generated by this method has been extensively used to perform [2 + 2] cycloadditions. The most widely studied reaction is the addition of the ketene to imines for the construction of the valuable b-lactam ring (eq 15).35 This reaction proceeds readily with a wide range of imines with varying structures. Even diimines can be doubly cyclized. The in situ generated ketene was also trapped by allenes.36a An interesting method regarding the preparation of squaric acid is based the use of the monochloroketene.36b

Beside [2 + 2] cycloadditions, [4 + 2] and [8 + 2] cycloadditions involving the in situ generated chloroketene have also been studied.35a,37,38


Chloroacetyl chloride occasionally serves as a chlorinating agent.39 2,4-Pentanedione was chlorinated at the 1- and 5-positions upon treatment with ClCH2COCl/AlCl3 in the presence of Cu(OAc)2.39a,b Chloroacetyl chloride has also been used to transform 2-picoline N-oxide and 2-oxo-2-dimethylamino-5-methyl-1,2-oxophospholane to 2-chloromethylpyridine and 2-oxo-2-chloro-5-methyl-1,2-oxophospholane, respectively.39c,d

Related Reagents.

Chloroacetyl Fluoride; Dichloroketene.

1. (a) Olah, G. A.; Kobayashi, S. JACS 1971, 93, 6964. (b) Dumpis, M. A.; Kudryashova, N. I.; Khromov-Borisov, N. V. JOU 1980, 16, 1799. (c) Vejdelek, Z. J.; Bartosova, M.; Capek, A.; Protiva, M. CCC 1978, 43, 970. (d) Albrecht, W. L.; Fleming, R. W.; Horgan, S. W.; Kihm, J. C.; Mayer, G. D. JMC 1974, 17, 886.
2. (a) Belen'kii, L. I.; Yakubov, A. P.; Gol'dfarb, Ya. L. JOU 1970, 6, 2531. (b) Belen'kii, L. I.; Yakubov, A. P.; Gol'dfarb, Ya. L. JOU 1970, 6, 2537. (c) Belen'kii, L. I.; Yakubov, A. P.; Gol'dfarb, Ya. L. JOU 1975, 11, 412. (d) del Agua, M. J.; Alvarez-Insua, A. S.; Conde, S. JHC 1981, 18, 1345. (e) Murakami, Y.; Tani, M.; Tanaka, K.; Yokoyama, Y. H 1984, 22, 241. (f) Nakayama. J.; Murabayashi, S.; Hoshino, M. H 1987, 26, 2599. (g) Nakatsuka, S.; Asano, O.; Goto, T. CL 1987, 1225. (h) Murakami, Y.; Tani, M.; Ariyasu, T.; Nishiyama, C.; Watanabe, T.; Yokoyama, Y. H 1988, 27, 1855.
3. (a) Giordano, C.; Castaldi, G.; Casagrande, F.; Belli, A JCS(P1) 1982, 2575. (b) Babad, E.; Carruthers, N. I.; Jaret, R. S.; Steinman, M. S 1988, 966. (c) Gurjar, M. K.; Joshi, S. V.; Sastry, B. S.; Rao, A. V. R. SC 1990, 20, 3489. (d) Jolly, C. A.; Wang, F.; Krichene, S.; Reynolds, J. R.; Cassoux, P.; Faulmann, C. Synth. Met. 1989, 29, F189.
4. Sartori, G.; Casnati, G.; Bigi, F. JOC 1990, 55, 4371.
5. Lindsey, A. S.; Jeskey, H. CRV 1957, 57, 583.
6. (a) Sangaiah, R.; Gold, A. JOC 1987, 52, 3205. (b) Murai, A.; Sato, S.; Masamune, T. CC 1982, 511. (c) Murai, A.; Sato, S.; Masamune, T. BCJ 1984, 57, 2286. (d) Granoth, I.; Pownall, H. J. JOC 1975, 40, 2088. (e) Granoth, I.; Kalir, A. JOC 1973, 38, 841.
7. (a) Baddeley, G.; Taylor, H. T.; Pickles, W. JCS 1953, 124. (b) Sieglitz, A.; Horn, O. CB 1951, 84, 607. (c) Franck-Neumann, M.; Abdali, A.; Colson, P. J.; Sedrati, M. SL 1991, 331. (d) Quijano, M. L.; Nogueras, M.; Sanchez, A.; de Cienfuegos, G. A.; Melgarejo, M. JHC 1990, 27, 1079. (e) Tubul, A.; Ouvrard, P.; Santelli, M. S 1991, 173.
8. (a) Clayton, J. P.; Guest, A. W.; Taylor, A. W. CC 1979, 500. (b) Krafft, M. E.; Pankowski, J. SL 1991, 865.
9. (a) Cason, J. CRV 1947, 40, 15. (b) Bergman, J.; Venemalm, L. T 1990, 46, 6061. (c) Jackson, R. F. W.; Wood, A.; Wythes, M. SL 1990, 735. (d) Jackson, R. F. W.; Wishart, N.; Wood, A.; Wythes, M.; James, K. JOC 1992, 57, 3397.
10. (a) Karaev, S. F.; Guseinov, S. O.; Akhundov, E. A. JGU 1981, 51, 1163. (b) Furstner, A.; Kollegger, G.; Weidmann, H. JOM 1991, 414, 295.
11. (a) Mastalerz, H.; Vinet, V. CC 1987, 1283. (b) Vedejs, E.; Reid, J. G.; Rodgers, J. D.; Wittenberger, S. J. JACS 1990, 112, 4351. (c) Kumar, V.; Daum, S. J.; Bell, M. R.; Alexander, M. A.; Christiansen, R. G.; Ackerman, J. H.; Krolski, M. J.; Pilling, G. M.; Herrmann, J. L.; Winneker, R. C.; Wagner, M. M. T 1991, 47, 5099. (d) Sakaki, J.; Sugita, Y.; Sato, M.; Kaneko, C. CC 1991, 434.
12. Pshenichnyi, V. N.; Gulyakevich, O. V.; Khripach, V. A. JOU 1989, 25, 1699.
13. (a) Bernasconi, S.; Jommi, G.; Montanari, S.; Sisti, M. S 1987, 1126. (b) Bernasconi, S.; Gariboldi, P.; Jommi, G.; Sisti, M.; Tavecchia, P. JOC 1981, 46, 3719.
14. (a) Chenault, H. K.; Dahmer, J.; Whitesides, G. M. JACS 1989, 111, 6354. (b) Hermecz, I. JHC 1987, 24, 1473. (c) Lukanov, L. K.; Venkov, A. P. S 1992, 263. (d) Heckendorn, R. HCA 1990, 73, 1700. (e) Tsuge, O.; Kanemasa, S.; Yoshioka, M. JOC 1988, 53, 1384. (f) Lemus, R. H.; Skibo, E. B. JOC 1992, 57, 5649. (g) Massa, S.; Mai, A.; Corelli, F. TL 1988, 29, 6471. (h) Kruizinga, W.; Kingma, R.; Leegstra, L.; Rokaszewski, E.; Gruppen, G.; Kellogg, R. M. CC 1990, 1647. (i) Orena, M.; Porzi, G.; Sandri, S. JOC 1992, 57, 6532. (j) Compernolle, F.; Saleh, M. A.; Toppet, S.; Hoornaert, G. JOC 1991, 56, 5192. (k) White, B. D.; Mallen, J. M.; Arnold, K. A.; Fronczek, F. R.; Gandour, R. D.; Gehrig, L. M. B.; Gokel, G. W. JOC 1989, 54, 937. (l) El-Shafei, A. K.; El-Sayed, A. M.; Khalaf, A. A. BCJ 1983, 56, 918. (m) Korshin, E. E.; Soboleva, G. I.; Levin, Y. A.; Zakharova, L. G.; Litvinov, I. A.; Naumov, V. A.; Podval'nyi, E. A.; Efremov, Y. Y. JOU 1992, 28, 973.
15. (a) Charles, E. S.; Sharma, S. IJC(B) 1987, 26B, 752. (b) Katz, H. E.; Schilling, M. L. JACS 1989, 111, 7554.
16. (a) Wanner, M. J.; Koomen, G. J. TL 1989, 30, 2301. (b) Carelli, I.; Inesi, A. S 1986, 591. (c) Krafft, G. A.; Sutton, W. R.; Cummings, R. T. JACS 1988, 110, 301. (d) Lee, M.; Rhodes, A. L.; Wyatt, M. D.; D'Incalci, M.; Forrow, S.; Hartley, J. A. JMC 1993, 36, 863. (e) Smith, B. D.; Paugam, M-F.; Haller, K. J. JCS(P2) 1993, 165. (f) Fetter, J.; Czuppon, T.; Hornyak, G.; Feller, A. T 1991, 47, 9393. (g) Ananthanarayanan, C.; Ramakrishnan, V. T. IJC(B) 1988, 27B, 156. (h) El-Ezbawy, S. R.; Alshaikh, M. A. PS 1990, 48, 111.
17. (a) Bradshaw, J. S.; Krakowiak, K. E.; Wu, G.; Izatt, R. M. TL 1988, 29, 5589. (b) Bradshaw, J. S.; Krakowiak, K. E.; Izatt, R. M.; Zamecka-Krakowiak, D. J. TL 1990, 31, 1077. (c) Oi, R.; Sharpless, K. B. TL 1991, 32, 4853. (d) Tsizin, Y. S.; Sergovskaya, N. L.; Chernyak, S. A. Chem. Heterocycl. Compd. 1986, 421.
18. (a) Nuzillard, J-M.; Boumendjel, A.; Massiot, G. TL 1989, 29, 3779. (b) Campbell, M. M.; Campbell, A. C.; Peace, A.; Pick, J.; Woods, G. F. CC 1985, 1164. (c) Taylor, E. C.; Hinkle, J. S. JOC 1987, 52, 4107. (d) Krowicki, K.; Lown, J. W. JOC 1987, 52, 3493.
19. (a) Orena, M.; Porzi, G.; Sandri, S. TL 1992, 33, 3797. (b) Takeuchi, H.; Hagiwara, S.; Eguchi, S. T 1989, 45, 6375. (c) Rigo, B.; Lespagnol, C.; Pauly, M. JHC 1988, 25, 59.
20. (a) Krakowiak, K. E.; Bradshaw, J. S.; Forsnes, E. V.; Izatt, R. M. JHC 1989, 26, 661. (b) Gennari, C.; Poli, G.; Scolastico, C.; Vassallo, M. TA 1991, 2, 793. (c) Kikelj, D.; Kidric, J.; Pristovsek, P.; Pecar, S.; Urleb, U.; Krbavcic, A.; Honig, H. T 1992, 48, 5915.
21. (a) Hassner, A.; Burke, S. S.; JACS 1975, 97, 4692. (b) Venkov, A. P.; Nikolova, M. S.; Mollov, N. M. CI(L) 1982, 808. (c) Venkov, A. P.; Statkova, S. M.; Ivanov, I. I. SC 1992, 22, 125. (d) Venkov, A.; Lukanov, L. K. S 1989, 59. (e) Bayard, P.; Sainte, F.; Beaudeginies, R.; Ghosez, L. TL 1988, 31, 3799. (f) Okamoto, H.; Kato, S. BCJ 1991, 64, 2128. (g) Okamoto, H.; Kobutani, T.; Kato, S. BCJ 1992, 65, 674.
22. (a) Brady, W. T.; Owens, R. A. JHC 1977, 14, 179. (b) Brady, W. T.; Owens, R. A. JOC 1977, 42, 3220.
23. (a) Yonezawa, Y.; Kisuno, A.; Shin, C. BCJ 1986, 59, 3696. (b) Bruche, L.; Garanti, L.; Zecchi, G. S 1986, 772. (c) Jones, S. D.; Kennewell, P. D.; Tulley, W. R.; Westwood, R.; Sammes, P. G. JCS(P1) 1990, 447.
24. Vass, A.; Szalontai, G. S 1986, 817.
25. (a) Hogale, M. B.; Salunkhe, V. K.; Kachare, D. S. JIC 1989, 66, 484. (b) Sagitdinova, K. F.; Ibatullin, U. G.; Gallyamova, Z. R.; Rakhmatullina, G. A.; Akmanova, N. A.; Safarov, M. G. Chem. Heterocycl. Compd. 1990, 932.
26. (a) Walser, A.; Flynn, T.; Mason, C. JHC 1991, 28, 1121. (b) Batori, S.; Messmer, A. JHC 1990, 27, 1673. (c) Okawara, T.; Kato, R.; Yamasaki, T.; Yasuda, N.; Furukawa, M. H 1986, 24, 885. (d) Liu, K-C.; Shih, B-J.; Chern, J-W. JHC 1989, 26, 457. (e) Szilagyi, G.; Matyus, P.; Sohar, P. T 1989, 45, 7921. (f) Misztal, S.; Dukat, M.; Mokrosz, J. L. JCS(P1) 1990, 2311. (g) Ichinari, M.; Nakayama, K.; Hayase, Y. H 1988, 27, 2635.
27. (a) Brown, G. R.; Foubister, A. J. JCS(P1) 1989, 1401. (b) Hussein, A. Q. H 1987, 26, 163. (c) Tikk, I.; Deak, G.; Sohar, P.; Tamas, J. JHC 1988, 25, 273. (d) Agirbas, H.; Sumengen, D.; Durust, Y.; Durust, N.; SC 1992, 22, 209. (e) Rao, M. N.; Holkar, A. G.; Ayyangar, N. R. TL 1990, 31, 3343. (f) Melillo, D. G.; Larsen, R. D.; Mathre, D. J.; Shukis, W. F.; Wood, A. W.; Colleluori, J. R. JOC 1987, 52, 5143. (g) Brown, G. R.; Foubister, A. J.; Wright, B. JCS(P1) 1987, 557. (h) Brown, G. R.; Foubister, A. J.; Stribling, D. JCS(P1) 1987, 547.
28. (a) Hammouda, H. A.; Abd-Allah, S. O.; Hussain, S. M.; Yousef. N. M. G 1984, 114, 201. (b) El-Bahaie, S.; Bayoumy, E. E.; Youssif, S. JIC 1988, 65, 695. (c) Kopka, I. E. TL 1988, 29, 3765. (d) Molina, P.; Arques, A.; Alias, A. T 1992, 48, 1285. (e) Okawara, T.; Kato, R.; Yasuda, N.; Yamasaki, T.; Furukawa, M. JCR(S) 1987, 254.
29. (a) Tanikaga, R.; Jun, T. X.; Kaji, A. JCS(P1) 1990, 1185. (b) Ngooi, T. K.; Scilimati, A.; Guo, Z.; Sih, C. JOC 1989, 54, 911. (c) Schmidt, U.; Kroner, M.; Griesser, H. S 1991, 294. (d) Fasth, K-J.; Antoni, G.; Langstrom, B.; JCS(P1) 1988, 3081. (e) Genet, J. P.; Kopola, N.; Juge, S.; Ruiz-Montes, J.; Antunes, O. A. C.; Tanier, S. TL 1990, 31, 3133. (f) Gokel, G. W.; Hernandez, J. C.; Viscariello, M. J.; Arnold, K. A.; Campana, C. F.; Echegoyen, L.; Fronczek, F. R.; Gandour, R. D.; Morgan, C. R.; Trafton, J. E.; Miller, S. R.; Minganti, C.; Eiband, D.; Schultz, R. A.; Tamminen, M. JOC 1987, 52, 2963. (g) Schwartz, A.; Madan, P. B.; Mohacsi, E.; O'Brien, J. P.; Todaro, L. J.; Coffen, D. L. JOC 1992, 57, 851. (h) Franck-Neumann, M.; Briswalter, C.; Chemla, P.; Martina, D. SL 1990, 637.
30. (a) Pozsgay, V.; Glaudemans, C. P. J.; Robbins, J. B.; Schneerson, R. T 1992, 48, 10249. (b) Nilsson, S.; Lonn, H.; Norberg, T. J. Carbohydr. Chem. 1991, 10, 1023. (c) Lubineau, A.; Meter, E.; Place, P. Carbohydr. Res. 1992, 228, 191.
31. (a) Himbert, G.; Fink, D.; Diehl, K. CB 1988, 121, 431. (b) Briody, J. M.; Satchell, D. P. N. JCS 1965, 168. (c) Strazzolini, P.; Verardo, G.; Giumanini, A. G. JOC 1988, 53, 3321.
32. (a) Velezheva, V. S.; Ryabova, S. Y. Chem. Heterocycl. Compd. 1990, 333. (b) Cunico, R.; Kuan, C. P. JOC 1992, 57, 3331.
33. Lee, K-J.; Kim, S. H.; Kim, S.; Cho, Y. R. S 1992, 929.
34. (a) Kang, J.; Lim, D. S. SL 1990, 611. (b) Larsen, J.; Lenoir, C. S 1989, 134. (c) Muller, H.; Fritz, H. P.; Nemetschek, R.; Hackl, R.; Biberacher, W.; Heidmann, C-P. ZN(B) 1992, 47B, 718.
35. (a) Duran, F.; Ghosez, L. TL 1970, 245. (b) Bentley, R. L.; Suschitzky, H. JCS(P1) 1976, 1725. (c) Cardellini, M.; Claudi, F.; Moracci, M. F. S 1984, 1070. (d) Yamamoto, I.; Abe, I.; Nozawa, M.; Kotani, M.; Motoyoshiya, J.; Gotoh, H.; Matsuzaki, K. JCS(P1) 1983, 2297. (e) Wharton, C. J.; Wrigglesworth, R.; Rowe, M. JCS(P1) 1984, 29. (f) Alcaide, B.; Dominguez, G.; Escobar, G.; Parreno, Plumet, J. H 1986, 24, 1579. (g) Fodor, L.; Szabo, J.; Szucs, E.; Bernath, G.; Sohar, P.; Tamas, J. T 1984, 40, 4089. (h) Sohar, P.; Stajer, G.; Pelczer, I.; Szabo, A. E.; Szunyog, J.; Bernath, G. T 1985, 41, 1721. (i) Szollosy, A.; Kotovych, G.; Toth, G.; Levai, A. CJC 1988, 66, 279. (j) Alcaide, B.; Martin-Cantalejo, Y.; Perez-Castells, J.; Rodriguez-Lopez, J.; Sierra, M.; Monge, A.; Perez-Garcia, V. JOC 1992, 57, 5921. (k) Hogale, M. B.; Uthale, A. C. IJC(B) 1990, 29B, 590. (l) Srivastava, V. K.; Palit, G.; Singh, S.; Dhawan, R.; Shanker, K. JIC 1990, 67, 335. (m) El-Ezbawy, S. R.; Abdel-Wahab, A. A. PS 1991, 57, 127. (n) Vansdadia, R. N.; Roda, K. P.; Parekh, H. JIC 1989, 66, 56.
36. (a) Brady, W. T.; Stockton, J. D.; Patel, A. D. JOC 1974, 39, 236. (b) Bellus, D. JOC 1979, 44, 1208.
37. (a) Brady, W. T.; Agho, M. O. S 1982, 500. (b) Manrao, M. R.; Kumar, A.; Kalsi, P. S. JIC 1986, 63, 410.
38. (a) Machiguchi, T.; Yamabe, S. CL 1990, 1511. (b) Ito, K.; Saito, K.; Takahashi, K. BCJ 1992, 65, 812.
39. (a) Rychnovsky, S. D.; Griesgraber, G.; Zeller, S.; Skalitzky, D. J. JOC 1991, 56, 5161. (b) Matsui, K.; Motoi, M.; Nojiri, T. BCJ 1973, 46, 562. (c) Ash, M. L; Pews, R. G. JHC 1981, 18, 939. (d) Neretdinova, O. N.; Guseva, F. F. IZV 1990, 1433.

George A. Olah, G. K. Surya Prakash, Qi Wang & Xing-ya Li

University of Southern California, Los Angeles, CA, USA

Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.