Carbon Tetrabromide

CBr4

[558-13-4]  · CBr4  · Carbon Tetrabromide  · (MW 331.65)

(brominating agent used in synthesis of a-acetoxycarboxylic acids4 and allenes;5-8 radical additions to alkenes12-28).

Alternate Name: tetrabromomethane.

Physical Data: shining plates, mp 88-90 °C; bp 190 °C (dec).

Solubility: insol in water, sol in organic solvents.

Form Supplied in: white solid; widely available.

Analysis of Reagent Purity: FT-IR data.1

Preparative Method: carbon tetrabromide is most conveniently prepared by the exhaustive bromination of acetone in the presence of alkali.2

Purification: can be sublimed in vacuo; bromide removal via reflux with dil aq Na2CO3, followed by steam-distillation and EtOH recrystallization.29

Handling, Storage, and Precautions: safety data are available.3

Carbon Tetrabromide-Tin(II) Fluoride.

The reaction of aldehydes with CBr4 and SnF2 in DMSO at 25 °C gives 1-substituted 2,2,2-tribromoethanols in moderate to good yields. The acetate of the product can be hydrolyzed to an a-acetoxycarboxylic acid by AgNO3 (eq 1).4

2,3-Diacetyl-D-erythronolactone4 has been prepared in a similar fashion (eq 2).

Allene Synthesis.

The system of carbon tetrabromide (1 equiv) with methyllithium (2 equiv) converts Cn alkenes into Cn + 1 allenes.5-8 The synthesis of 1,2,6-cyclodecatriene from cis,cis-1,5-cyclononadiene7 serves as an example (eq 3).

When 1 equiv of MeLi is used, the intermediate dibromocyclopropane can be isolated (eqs 4 and 5). Bicyclobutanes are the sole products when the resulting allene would be highly strained (eq 4),9 or they are significant byproducts (eq 5) when the allene possesses two bulky geminal groups.10

Dehalogenation of dibromocyclopropanes with an alkyllithium in the presence of (-)-sparteine gives optically active allenes of low optical purity.11

Radical Reactions.

The addition of CBr4, or other halogenocarbons, to alkenes is known as the Kharasch reaction. The reactions of terminal alkenes furnish the addition products in the highest yields (eq 6).

The reaction can be initiated by photoirradiation,12 radical initiators,13 inorganic salts,14,15 ruthenium complexes,16-19 other transition metal complexes,20-24 samarium diiodide,25 or by a manganic salt generated electrochemically in situ.26 The scope and limitations of this reaction have been reviewed in two monographs.27,28

For related chemistry using CBr4, see the entries Triphenylphosphine-Carbon Tetrabromide, Triphenylphosphine-Carbon Tetrabromide-Lithium Azide, Tribromomethyllithium and 1,2-Bis(diphenylphosphino)ethane.


1. The Aldrich Library of FT-IR Spectra; Pouchert, C. J., Ed.; Aldrich: Milwaukee, 1989; Vol. 3, p 122.
2. Hunter, W. H.; Edgar, D. E. JACS 1932, 54, 2025.
3. The Sigma-Aldrich Library of Chemical Safety Data, 2nd ed.; Lenga, R. E, Ed.; Sigma-Aldrich: Milwaukee, 1988; Vol. 1, p 686.
4. Mukaiyama, T.; Yamaguchi, M.; Kato, J. CL 1981, 1505.
5. Untch, K. G.; Martin, D. J.; Castellucci, N. T. JOC 1965, 30, 3572.
6. Moorthy, S. N.; Vaidyanathaswamy, R.; Devaprabhakara, D. S 1975, 194.
7. Sharma, S. N.; Srivastava, R. K.; Devaprabhakara, D. CJC 1968, 46, 84.
8. (a) Moore, W. R.; Ozretich, T. M. TL 1967, 3205; (b) Nozaki, H.; Kato, S.; Noyori, R. CJC 1966, 44, 1021.
9. Skattelbol, L. TL 1970, 2361.
10. Brown, D. W.; Hendrick, M. E.; Jones, M. TL 1973, 3951.
11. Nozaki, H.; Aratani, T.; Toroya, T.; Noyori, R. T 1971, 27, 905.
12. Kharasch, M. S.; Jensen, E. V.; Urry, W. H. Science 1945, 102, 128.
13. Kharasch, M. S.; Jensen, E. V.; Urry, W. H. JACS 1947, 69, 1100.
14. Asscher, M.; Vofsi, D. JCS 1963, 1887.
15. Asscher, M.; Vofsi, D. JCS 1963, 3921.
16. Matsumoto, H.; Nakano, T.; Nagai, Y. TL 1973, 5147.
17. Kamigata, N.; Kameyama, M.; Kobayashi, M. JOC 1987, 52, 3312.
18. Kameyama, M.; Kamigata, N. BCJ 1987, 60, 3687.
19. Matsumoto, H.; Nikaido, T.; Nagai, Y. TL 1975, 899.
20. Tsuji, J.; Sato, K.; Nagashima, H. CL 1981, 1169.
21. Susuki, T.; Tsuji, J. JOC 1970, 35, 2982.
22. Shvekhgeimer, G. A.; Kobrakov, K. I.; Kartseva, O. I.; Balabanova, L. V. KGS 1991, 369.
23. Davis, R.; Durrant, J. L. A.; Khazal, N. M. S.; Bitterwolf, T. JOM 1990, 386, 229.
24. (a) Davis, R.; Khazal, N. M. S.; Bitterwolf, T. E. JOM 1990, 397, 51; (b) Bland, W. J.; Davis, R.; Durrant, J. L. A. JOM 1985, 280, 95.
25. Ma, S.; Lu, X. JCS(P1) 1990, 2031.
26. Nohair, K.; Lachaise, I.; Paugam, J.-P.; Nedelec, J.-Y. TL 1992, 33, 213.
27. Sosnovsky, G. Free Radical Reactions in Preparative Organic Chemistry; Macmillan: New York, 1964.
28. Giese, B. Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds; Pergamon: Oxford, 1986.
29. Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals, 3rd ed.; Pergamon: Oxford, 1988; p 116.

Lucjan Strekowski & Alexander S. Kiselyov

Georgia State University, Atlanta, GA, USA



Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.