1,2-Bis(phenylsulfonyl)ethylene1

(Z)

[963-15-5]  · C14H12O4S2  · 1,2-Bis(phenylsulfonyl)ethylene  · (MW 308.37) (E)

[963-16-6]

(powerful dienophiles and synthetic equivalents of acetylene and ethylene in Diels-Alder cycloadditions;2 react as Michael acceptors with substitution of a phenylsulfonyl group3)

Alternate Name: BPSE.

Physical Data: (Z) mp 100-101 °C; (E) mp 219.5 °C.

Solubility: the (Z)-isomer is more soluble than the (E)-isomer in most solvents. In Diels-Alder cycloadditions conducted in dichloromethane, the (Z)-isomer affords quite insoluble adducts; conversely, the (E)-compound leads to more soluble products.

Form Supplied in: colorless solids; commercially available.

Analysis of Reagent Purity: purity with respect to one another can be checked by 1H NMR. The vinyl protons of the (Z)-isomer appear at 6.82 ppm and those of the (E)-isomer at 7.37 ppm in CDCl3.

Preparative Methods: (Z)-1,2-bis(phenylsulfonyl)ethylene is prepared by oxidation of the corresponding thioether,2 which is prepared from (Z)-1,2-dichloroethylene4 or, for large quantities, from 1,1-dichloroethylene.4b A mixture of the (Z)- and (E)-1,2-dichloroethylenes can also be used, but the (E)-isomer is unreactive under standard conditions.4b Under more drastic reaction conditions (DMF, 70-90 °C), (E)-1,2-dichloroethylene also affords the substitution product [57% (E), 14% (Z)].4c The preparation of the (E)-isomer is accomplished by sunlight-iodine catalyzed isomerization of the (Z)-isomer.2

Handling, Storage, and Precautions: the (Z)-isomer should be stored protected from direct light because it isomerizes to the (E)-form.

Cycloadditions.

1,2-Bis(phenylsulfonyl)ethylenes [(Z)- and (E)-BPSE] are most commonly used as synthetic equivalents of acetylene in cycloaddition reactions (eq 1).2,5 A number of dienes have been prepared via this route which are otherwise not readily accessible.6

The preparation of both the syn- and the anti-sesquinorbornatrienes was possible because of the different stereochemistry by which the (Z)- and (E)-isomers add to 8,9-dehydroisodicyclopentadiene (eq 2).7 Further studies on these molecules have been reported, including the preparation of deutero derivatives via the deuterated (Z)-BPSE.8 Use of (E)-BPSE in the preparation of a natural product is described in eq 3.9

The choice of the solvent for cycloadditions is often crucial. While both reagents are not reactive towards furan in refluxing benzene,10 they react smoothly at rt in quantitative yields in dichloromethane.2,11

Generally, the (E)-isomer is more reactive in cycloadditions than the (Z)-isomer. For example, the reaction of (E)-BPSE with cyclopentadiene in dioxane is 100 times faster than that of the (Z)-isomer.12 A few dienes (1,3-cycloheptadiene and cyclooctatetraene are examples) react only with the former. With cyclopentadiene in dioxane, (E)-BPSE is twice as reactive as Maleic Anhydride,12 but cases have been reported where (E)-BPSE failed to react while maleic anhydride did react. Styrene, homobarrelene, and other polycyclic dienes are examples.13 High pressure (10-12 kbar) can be used to increase reactivity.14 Examples are the preparations of derivatives of syn-sesquinorbornatriene14a and of the C4v [4]peristylane tetraketone (eq 4).14c

The desulfonylation of cycloadducts can be performed with Sodium Amalgam (1.5-6%) in methanol buffered with suspended sodium dihydrogen phosphate.2 Because the reaction is heterogeneous, sonication has been proved beneficial.13a Samarium(II) Iodide in HMPA has also been used.15 Other reducing agents and reaction conditions, such as Magnesium-Methanol,16 afford mixtures of saturated and unsaturated hydrocarbons. Lithium or Sodium metal in liquid ammonia effectively gives solely the saturated adduct, making the title reagent equivalent to ethylene in cycloaddition reactions.17

When treated with base, the Diels-Alder adducts give vinyl sulfones. In one example, the vinyl sulfone was further reacted with nucleophiles in a synthesis of ibogamine (eq 5).18

Substitution of one vinyl hydrogen with chlorine gives reagents that can be considered equivalents of the unstable bis(arylsulfonyl)alkynes (eq 6).19

The parent and substituted bis(arylsulfonyl)alkenes, such as the one prepared in eq 6, are good Michael acceptors20 and react with heteroatomic nucleophiles and Grignard reagents.3,21 The products correspond to the formal substitution of one of the phenylsulfonyl groups. In eq 7, the product of the Michael addition cyclizes to a dihydrofuran upon deprotonation with Lithium Diisopropylamide.21a

Both isomeric reagents are also reactive dipolarophiles.22 For example, they react with azomethine ylides,22a,b nitrones,22c and diazoalkanes (eq 8).22d

C2-Symmetrical chiral versions of these reagents (1) and (2), which maintain the chemical properties associated with the achiral reagents, are available (see 1,1-Binaphthalene-2,2-dithiol).23

These reagents are stable towards racemization and are readily available from the respective dibenzo- or dinaphtho-2,2-dithiols. In cycloadditions with nonsymmetrical dienes they afford a single diastereoisomer in most cases.


1. (a) De Lucchi, O.; Pasquato, L. T 1988, 44, 6755. (b) Cossu, S.; De Lucchi, O.; Fabbri, D.; Licini, G.; Pasquato, L. OPP 1991, 23, 571. (c) Tanaka, K.; Kaji, A. In The Chemistry of Sulphones and Sulphoxides, Patai, S.; Rappoport, Z.; Stirling, C. J. M., Eds.; Wiley: Chichester, 1988; Chapter 15, pp 791-799. (d) Simpkins, N. S. Sulphones in Organic Synthesis; Pergamon: Oxford, 1993.
2. De Lucchi, O.; Lucchini, V.; Pasquato, L.; Modena, G. JOC 1984, 49, 596.
3. Meek, J. S.; Fowler, J. S. JOC 1968, 33, 985.
4. (a) Cusa, N. W.; McCombie, H. JCS 1937, 767. (b) Truce, W. E.; Boudakian, M. M.; Heine, R. F.; McManimie, R. J. JACS 1956, 78, 2743. (c) Tanimoto, S.; Taniyasu, R.; Takahashi, T.; Miyake, T.; Okano, M. BCJ 1976, 49, 1931. (d) Tiecco, M.; Testaferri, L.; Tingoli, M.; Chianelli, D.; Montanucci, M. JOC 1983, 48, 4795.
5. De Lucchi, O.; Modena, G. T 1984, 40, 2585.
6. (a) Mirsadeghi, S.; Rickborn, B. JOC 1985, 50, 4340. (b) Kazimirchik, I. V.; Lukin, K. A.; Taranyuk, I. L.; Bebikh, G. F.; Zefirov, N. S. ZOR 1985, 21, 313. (c) Paquette, L. A.; Racherla, U. S. JOC 1987, 52, 3250. (d) Kobayashi, T.; Miki, S.; Yoshida, Z.; Asako, Y.; Kajimoto, C. JACS 1988, 110, 5622. (e) Krebs, J.; Guggisberg, D.; Stämpfli, U.; Neuenschwander, M. HCA 1986, 69, 835. (f) Azzena, U.; Cossu, S.; De Lucchi, O.; Melloni, G. SC 1988, 18, 351. (g) Patney, H. K. JOC 1988, 53, 6106. (h) Paquette, L. A. Gugelchuk, M.; McLaughlin, M. L. JOC 1987, 52, 4732.
7. (a) De Lucchi, O.; Licini, G.; Pasquato, L. CC 1985, 418. (b) Paquette, L. A.; Künzer, H.; Green, K. E. JACS 1985, 107, 4788. (c) Paquette, L. A.; Künzer, H.; Green, K. E.; De Lucchi, O.; Licini, G.; Pasquato, L.; Valle, G. JACS 1986, 108, 3453.
8. (a) Künzer, H.; Cottrell, C. E.; Paquette, L. A. JACS 1986, 108, 8089. (b) Künzer, H.; Litterst, E.; Gleiter, R.; Paquette, L. A. JOC 1987, 52, 4740. (c) Paquette, L. A.; Künzer, H.; Kesselmayer, M. A. JACS 1988, 110, 6521.
9. Polniaszek, R. P.; Dillard, L. W. JOC 1992, 57, 4103.
10. Snyder, H. R.; Hallada, D. P. JACS 1952, 74, 5595.
11. Cossu, S.; De Lucchi, O.; Dilillo, F. G 1989, 119, 519.
12. (a) Sauer, J.; Wiest, H.; Mielert, A. CB 1964, 97, 3183. (b) Sauer, J.; Lang, D.; Wiest, H. CB 1984, 97, 3208.
13. (a) De Lucchi, O.; Pasquato, L. unpublished. (b) Fessner, W.-D.; Sedelmeier, G.; Spurr, P. R.; Rihs, G.; Prinzbach, H. JACS 1987, 109, 4626. (c) Fessner, W.-D.; Grund, C.; Prinzbach, H. TL 1989, 30, 3133.
14. (a) Paquette, L. A.; Waykole, L.; Shen, C.-C.; Racherla, U. S.; Gleiter, R.; Litterst, E. TL 1988, 29, 4213. (b) Paquette, L. A.; Shen, C.-C. JACS 1990, 112, 1159. (c) Paquette, L. A.; Shen, C.-C.; Engel, P. JOC 1989, 54, 3329.
15. Künzer, H.; Stahnke, M.; Sauer, G.; Wiechert, R. TL 1991, 32, 1949.
16. Brown, A. C.; Carpino, L. A. JOC 1985, 50, 1749.
17. De Lucchi, O.; Pasquato, L. G 1984, 114, 349.
18. (a) Herdeis, C.; Hartke, C. H 1989, 29, 287. (b) Herdeis, C.; Hartke-Karger, C. LA 1991, 99.
19. Pasquato, L.; De Lucchi, O.; Krotz, L. TL 1991, 32, 2177.
20. (a) Azzena, U.; Cossu, S.; De Lucchi, O.; Melloni, G. TL 1989, 30, 1845. (b) Cossu, S.; De Lucchi, O. G 1990, 120, 569. (c) Azzena, U.; Cossu, S.; De Lucchi, O.; Melloni, G. G 1989, 119, 357.
21. (a) McCombie, S. W.; Shankar, B. B.; Ganguly, A. K. TL 1985, 26, 6301. (b) McCombie, S. W.; Shankar, B. B.; Ganguly, A. K. TL 1987, 28, 4123. (c) Padwa, A.; Bullock, W. H.; Dyszlewski, A. D.; McCombie, S. W.; Shankar, B. B.; Ganguly, A. K. JOC 1991, 56, 3556. (d) Flitsch, W.; Lubisch, W. CB 1982, 115, 1547.
22. (a) Padwa, A.; Fryxell, G. E.; Gasdaska, J. R.; Venkatramanan, M. K.; Wong, G. S. K. JOC 1989, 54, 644. (b) Pandey, G.; Lakshmaiah, G.; Kumaraswamy, G. CC 1992, 1313. (c) Burdisso, M.; Gandolfi, R.; Grünanger, P.; Rastelli, A. JOC 1990, 55, 3427. (d) Padwa, A.; Wannamaker, M. W. T 1991, 47, 6139.
23. (a) De Lucchi, O. PS 1993, 74, 195. (b) Cossu, S.; Delogu, G.; De Lucchi, O.; Fabbri, D.; Licini, G. AG(E) 1989, 28, 766. (c) De Lucchi, O.; Fabbri, D.; Cossu, S.; Valle, G. JOC 1991, 56, 1888 and unpublished results.

Ottorino De Lucchi

Università di Venezia, Italy

Lucia Pasquato

CNR-CMRO, Padova, Italy



Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.