Benzeneselenenyl Chloride1

[5707-04-0]  · C6H5ClSe  · Benzeneselenenyl Chloride  · (MW 191.52)

(electrophilic selenium reagent for alkene synthesis2-5)

Physical Data: mp 63-65 °C; bp 95-96 °C/6 mmHg, 120 °C/20 mmHg.

Solubility: sol common organic solvents such as hexane, CH2Cl2, and THF.

Form Supplied in: orange crystals; commercially available.

Preparative Methods: synthesized in 84-88% isolated yield by the reaction of Diphenyl Diselenide with Chlorine.5,6 Conveniently, benzeneselenenyl chloride can be prepared almost quantitatively in situ by treatment of diphenyl diselenide with an equimolar amount of Sulfuryl Chloride (SO2Cl2).4,7 Reagent prepared in this way may contain significant amounts of SO2.

Purification: recrystallized from hexane.

Handling, Storage, and Precautions: highly toxic; unpleasant smell.

Electrophilic Selenium Reagents.

Benzeneselenenyl chloride (PhSeCl) is the most common electrophilic selenium reagent and has been widely employed in the synthesis of a variety of natural and nonnatural products (see also Benzeneselenenyl Bromide (PhSeBr), Phenyl Selenocyanate (PhSeCN), o-Nitrophenyl Selenocyanate (o-NO2C6H4SeCN), Benzeneselenenyl Trifluoromethanesulfonate (PhSeOTf), and Diphenyl Diselenide (PhSeSePh)). Other useful electrophilic selenium reagents (PhSeOCOCF3,2,8 PhSeNO2,9,10 PhSeF,11-13 etc.) are usually prepared in situ from PhSeCl or PhSeBr and the corresponding silver salt.

Addition to Alkenes.

Chloroselenenylation.

PhSeCl adds to alkenes to give chloroselenenylation products in high yields.2,7,14 The addition proceeds exclusively in the trans manner due to intervention of a selenium-bridged cation (a seleniranium ion) as a reaction intermediate (eq 1). Reaction with unsymmetrical alkenes generally provides trans adducts with high regioselectivity.14 As shown in eq 2, terminal alkenes undergo chloroselenenylation to give anti-Markovnikov adducts under kinetic conditions and Markovnikov adducts under thermodynamic conditions.15 These reaction products are useful intermediates for a variety of organic compounds. For example, upon oxidation with Hydrogen Peroxide,2 chloroselenenylated alkenes are conveniently transformed to vinylic or allylic chlorides via syn elimination of the selenoxides. Ozone,5 Sodium Periodate,4 peroxy acids,4,16 and sulfuryl chloride15 can also be used as an oxidizing agent. When N-Chlorosuccinimide is employed as oxidizing agent, PhSeCl catalyzes the conversion of alkenes into vinylic or allylic chlorides.17 There are many other useful applications of chloroselenenylation, such as the transposition of 1,3-enones (eq 3),18 transformation of allylsilanes to allyl alcohols,19 and cis chlorination of alkenes.20

Oxyselenenylation.

Many types of oxyselenenylation reactions of alkenes employing PhSeCl or PhSeBr, such as acetoxy&nbhyph;,3,21 carboxy-,22 hydroxy-,23 alkoxy-,3,24 and glycosyloxyselenenylation25 have been reported (eq 4). Trans adducts are stereoselectively obtained and are easily transformed to allylic alcohols, ethers, etc., by treatment with hydrogen peroxide. Unsaturated carboxylic acids26,27 and alcohols26,28 react with PhSeCl to give lactones and cyclic ethers respectively, in good yields (eqs 5 and 6). The reaction proceeds via intramolecular capture of the seleniranium ion initially formed in the reaction with PhSeCl. The carbonyl29 and epoxide30 oxygens as well as the thiol sulfur31 also react as intramolecular nucleophiles to give 2,6-dideoxyglycosides, cyclic ethers, and cyclic thioethers, respectively. Dienes react with PhSeCl in aqueous acetonitrile to provide cyclic ethers in excellent yields (eq 7).32

Amidoselenenylation.

Alkenes efficiently undergo amidoselenenylation upon treatment with PhSeCl in aqueous acetonitrile in the presence of Trifluoromethanesulfonic Acid as an acid catalyst.33 The produced b-amidoalkyl phenyl selenides can be converted into allylic amides by oxidation with hydrogen peroxide in good yields (eq 8). The reaction of unsaturated urethanes34 and N-alkenylamides35 with PhSeCl affords pyrrolidine and piperidine derivatives by intramolecular cyclization (eq 9). Similarly, N-alkylalkenamides react with PhSeCl to provide lactams.36

Nitroselenenylation.

In the presence of Mercury(II) Chloride the reagent prepared from PhSeCl or PhSeBr and Silver(I) Nitrite smoothly adds to alkenes giving b-nitroalkyl phenyl selenides (eq 10).9 This reaction is useful for the preparation of 3,4-epoxy-3-nitro-1-alkenes from dienes10 and 2-nitro-1-alkenylsilanes from 1-alkenylsilanes.39

Cyclization with C-C Bond Formation.

(Z,Z)-Cyclonona-1,5-diene reacts with PhSeCl in acetic acid to give a bicyclic adduct stereoselectively (eq 11).40 Similar cyclization of dienes in acetonitrile smoothly proceeds with PhSeI prepared in situ from diphenyl diselenide and Iodine.37,38 Unsaturated b-keto esters react with PhSeCl to provide cyclohexane derivatives in good yields (eq 12).41

Fluoroselenenylation.

PhSeF equivalent prepared in situ from PhSeCl or PhSeBr and Silver(I) Fluoride reacts with alkenes to give b-fluoroalkyl phenyl selenides.12 The reaction proceeds more smoothly under ultrasound irradiation.11 The reagent, prepared from diphenyl diselenide and Xenon(II) Fluoride, is also useful for fluoroselenenylation of alkenes.13 The adducts can be oxidized to allylic fluorides exclusively rather than vinylic fluorides (eq 13).

Selenosulfonation.

Phenyl areneselenosulfonates (PhSeSO2Ar) react with alkenes to give selenosulfonation adducts in the presence of boron trifluoride etherate42 or under photochemical conditions (eq 14).43

Addition to Alkynes.

PhSeCl adds to alkynes to form b-chlorovinyl selenides in good yields.44 The addition proceeds via a selenirenium ion, a selenium-bridged unsaturated cation, and trans adducts are exclusively obtained. Similarly, PhSeBr,45 PhSeOCOCF3,2,5 PhSeI,38b,46 and PhSeF47 add to alkynes to afford trans adducts (eq 15), which can be transformed to many useful synthetic intermediates. For example, 1,4-dichlorobut-2-yne reacts with PhSeCl or PhSeBr, and is converted into dienes, which easily undergo Diels-Alder cycloaddition with methyl vinyl ketone (eq 16).45b Areneselenosulfonates (PhSeSO2Ar) also add to alkynes to give similar trans adducts.48 The reaction seems to proceed via a radical intermediate.

Reaction with Carbonyl Compounds and Their Derivatives.

Aldehydes and ketones directly react with PhSeCl to provide a-phenylseleno aldehydes and ketones, respectively, in good yields, while esters are converted into a-phenylseleno esters via lithium enolate (eq 17).4 The reaction of PhSeCl with ketones also efficiently proceeds via lithium enolates.5 These reaction products smoothly undergo oxidative syn elimination of the selenium moiety to give a,b-unsaturated carbonyl compounds in high yields. The reaction can be applied to the conversion of g-lactones into furans49 as well as to phenol synthesis from cyclohexene derivatives.50 Similarly, b-dicarbonyl compounds directly react with PhSeCl in the presence of equimolar Pyridine. The a-phenylselenenylation products are smoothly oxidized to the corresponding unsaturated b-dicarbonyl compounds (eq 18).51 a,b-Unsaturated ketones also directly react with PhSeCl or PhSeBr in the presence of pyridine to form a-phenylseleneno enones.52 The products undergo further reaction with PhSeCl to form a-halo enones in good yields (eq 19).

Enol ethers53 and enamines54 react with PhSeCl to give a-phenylseleno aldehydes in good yields (eq 20). On the other hand, cyclic acetals give the corresponding a-phenylseleno acetals by treatment with PhSeCl (eq 21).53

Reaction with a-Diazo Ketones.

PhSeCl rapidly reacts with a-diazo ketones at room temperature to provide a-chloro-a-phenylseleno ketones, which can be converted into a-chloro-a,b-unsaturated ketones by successive oxidation with hydrogen peroxide.55,56 PhSeBr,57 PhSeOAc,57 PhSeSCN,57 and PhSeF58 undergo similar reaction with a-diazo ketones to give the corresponding a-substituted-a-phenylseleno ketones in good yields (eq 22).


1. (a) Clive, D. L. J. T 1978, 34, 1049. (b) Reich, H. J. ACR 1979, 12, 22. (c) Nicolaou, K. C.; Petasis, N. A. Selenium in Natural Products Synthesis; CIS: Philadelphia, 1984. (d) The Chemistry of Organic Selenium and Tellurium Compounds; Patai, S; Rappoport, Z., Eds.; Wiley: New York, 1986, Vol. 1. (e) Paulmier, C. Selenium Reagents and Intermediates in Organic Synthesis; Pergamon: Oxford, 1986. (f) Organoselenium Chemistry; Liotta, D., Ed.; Wiley: New York, 1987.
2. Reich, H. J. JOC 1974, 39, 428.
3. Sharpless, K. B.; Lauer, R. F. JOC 1974, 39, 429.
4. Sharpless, K. B.; Lauer, R. F.; Teranishi, A. Y. JACS 1973, 95, 6137.
5. Reich, H. J.; Renga, J. M.; Reich, I. L. JACS 1975, 97, 5434.
6. Reich, H. J.; Cohen, M. L.; Clark, P. S. OS 1979, 59, 141.
7. Schmid, G. H.; Garratt, D. G. T 1978, 34, 2869.
8. Clive, D. L. J. CC 1974, 100.
9. Hayama, T.; Tomoda, S.; Takeuchi, Y.; Nomura, Y. TL 1982, 23, 4733.
10. Nájera, C.; Yus, M.; Karlsson, U.; Gogoll, A.; Bäckvall, J.-E. TL 1990, 31, 4199.
11. Tomoda, S. Usuki, Y. CL 1989, 1235.
12. McCarthy, J. R.; Matthews, D. P.; Barney, C. L. TL 1990, 31, 973.
13. Uneyama, K.; Kanai, M. TL 1990, 31, 3583.
14. Liotta, D.; Zima, G. TL 1978, 4977.
15. Engman, L. TL 1987, 28, 1463.
16. Reich, H. J.; Reich, I. L.; Renga, J. M. JACS 1973, 95, 5813.
17. Hori, T.; Sharpless, K. B. JOC 1979, 44, 4204.
18. (a) Liotta, D.; Zima, G. JOC 1980, 45, 2551. (b) Liotta, D.; Zima, G.; Saindane, M. JOC 1982, 47, 1258.
19. (a) Nishiyama, H.; Itagaki, K.; Sakuta, K.; Itoh, K. TL 1981, 22, 5285. (b) Nishiyama, H.; Narimatsu, S.; Itoh, K. TL 1981, 22, 5289.
20. Morella, A. M.; Ward, A. D. TL 1984, 25, 1197.
21. Kametani, T.; Suzuki, K.; Kurobe, H.; Nemoto, H. CC 1979, 1128.
22. Clive, D. L. J.; Beaulieu, P. L. CC 1983, 307.
23. Toshimitsu, A.; Aoai, T.; Owada, H.; Uemura, S.; Okano, M. CC 1980, 412.
24. (a) Kozikowski, A. P.; Sorgi, K. L.; Schmiesing, R. J. CC 1980, 477. (b) Tiecco, M.; Testaferri, L.; Tingoli, M.; Chianelli, D.; Bartoli, D. T 1988, 44, 2261.
25. Jaurand, G.; Beau, J.-M.; Sinay, P. CC 1981, 572.
26. Nicolaou, K. C.; Barnette, W. E. CC 1977, 331.
27. (a) Nicolaou, K. C.; Seitz, S. P.; Sipio, W. J.; Blount, J. F. JACS 1979, 101, 3884. (b) Goldsmith, D.; Liotta, D.; Lee, C.; Zima, G. TL 1979, 4801. (c) Clive, D. L. J.; Russell, C. G.; Chittattu, G.; Singh, A. T 1980, 36, 1399.
28. Nicolaou, K. C.; Lysenko, Z. TL 1977, 1257.
29. Current, S.; Sharpless, K. B. TL 1978, 5075.
30. Alvarez, E.; Manta, E.; Martin, J. D.; Rodriguez, M. L.; Ruiz-Perez, C.; Zurita, D. TL 1988, 29, 2097.
31. Nicolaou, K. C.; Magolda, R. L.; Sipio, W. J.; Barnette, W. E.; Lysenko, Z.; Joullie, M. M. JACS 1980, 102, 3784.
32. Uemura, S.; Toshimitsu, A.; Aoai, T.; Okano, M. TL 1980, 21, 1533.
33. (a) Toshimitsu, A.; Aoai, T.; Uemura, S.; Okano, M. CC 1980, 1041. (b) Toshimitsu, A.; Owada, H.; Aoai, T.; Uemura, S.; Okano, M. CC 1981, 546. (c) Toshimitsu, A.; Aoai, T.; Owada, H.; Uemura, S.; Okano, M. JOC 1981, 46, 4727.
34. Clive, D. L. J. Farina V.; Singh, A.; Wong, C. K.; Kiel, W. A.; Menchen, S. M. JOC 1980, 45, 2120.
35. Toshimitsu, A.; Terao, K.; Uemura, S. JOC 1986, 51, 1724.
36. Toshimitsu, A.; Terao, K.; Uemura, S. TL 1984, 25, 5917.
37. Toshimitsu, A.; Uemura, S.; Okano, M. CC 1982, 87.
38. (a) du Mont, W.-W.; Kubiniok, S.; Peters, K.; von Schnering, H.-G. AG(E) 1987, 26, 780. (b) Kubiniok, S.; du Mont, W.-W.; Pohl, S.; Saak, W. AG(E) 1988, 27, 431.
39. Hayama, T.; Tomoda, S.; Takeuchi, Y.; Nomura, Y. JOC 1984, 49, 3235.
40. Clive, D. L. J.; Chittattu, G.; Wong, C. K. CC 1978, 441.
41. Alderdice, M.; Weiler, L. CJC 1981, 59, 2239.
42. (a) Back, T. G.; Collins, S. TL 1980, 21, 2213. (b) Back, T. G.; Collins, S. TL 1980, 21, 2215.
43. Gancarz, R. A.; Kice, J. L. TL 1980, 21, 4155.
44. (a) Filer, C. N.; Ahern, D.; Fazio, R.; Shelton, E. J. JOC 1980, 45, 1313. (b) Hooz, J.; Mortimer, R. D. CJC 1978, 56, 2786.
45. (a) Bridges, A. J.; Fischer, J. W. TL 1983, 24, 445. (b) Bridges, A. J.; Fischer, J. W. JOC 1984, 49, 2954.
46. Tomoda, S.; Takeuchi, Y.; Nomura, Y. S 1985, 212.
47. (a) Usuki, Y.; Iwaoka, M.; Tomoda, S. CL 1992, 1507. (b) Saluzzo, C.; Alvernhe, G.; Anker, D. TL 1990, 31, 2127.
48. (a) Miura, T.; Kobayashi, M. CC 1982, 438. (b) Kang, Y.-H.; Kice, J. L. TL 1982, 23, 5373.
49. Grieco, P. A.; Pogonowski, C. S.; Burke, S. JOC 1975, 40, 542.
50. (a) Tietze, L.-F.; v. Kiedrowski, G.; Berger, B. TL 1982, 23, 51. (b) Tietze, L.-F.; v. Kiedrowski, G.; Berger, B. S 1982, 683.
51. Liotta, D.; Barnum, C.; Puleo, R.; Zima, G.; Bayer, C.; Kezar III, H. S. JOC 1981, 46, 2920.
52. Ley, S. V.; Whittle, A. J. TL 1981, 22, 3301.
53. Nicolaou, K. C.; Magolda, R. L.; Sipio, W. J. S 1979, 982.
54. Williams, D. R.; Nishitani, K. TL 1980, 21, 4417.
55. Giddings, P. J.; John, D. I.; Thomas, E. J. TL 1980, 21, 399.
56. Buckley, D. J.; Kulkowit, S.; McKervey, A. CC 1980, 506.
57. Buckley, D. J.; McKervey, M. A. JCS(P1) 1985, 2193.
58. Usuki, Y.; Iwaoka, M.; Tomoda, S. CC 1992, 1148.

M. Iwaoka & S. Tomoda

The University of Tokyo, Japan



Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.