Ammonium Peroxydisulfate

(NH4)2S2O8
(NH4)2S2O8

[7727-54-0]  · H8N2O8S2  · Ammonium Peroxydisulfate  · (MW 228.20) K2S2O8

[7727-21-1]  · K2O8S2  · Potassium Peroxydisulfate  · (MW 270.32) Na2S2O8

[7775-27-1]  · Na2O8S2  · Sodium Peroxydisulfate  · (MW 238.11)

(oxidizing agent for many functional groups;1 phenols form p-hydroxysulfate ester salts (Elbs oxidation), while arylamines give the o-aminosulfate esters (Boyland-Sims oxidation)1m)

Physical Data: E° = -1.92, -1.94 V.2

Solubility: sol water, 20 °C: ammonium salt, 2.5 M; potassium salt, 0.17 M; sodium salt, 2.3 M; reasonable solubility in aqueous mixtures with acetonitrile, the lower alcohols, and acetone. Quaternary ammonium salts of peroxydisulfate show much greater solubility in organic solvents.3

Form Supplied in: the three salts are commercially available as colorless crystalline solids.

Analysis of Reagent Purity: the commercial materials are typically 98-99% pure and may be analyzed by standard iodometric techniques.

Handling, Storage, and Precautions: the sodium and potassium salts are very stable as dry solids, the ammonium salt less so.4 Aqueous solutions undergo slow decomposition even at rt.4 Cases of asthma and skin rashes have been reported among constant users such as hairdressers and industrial workers.

Introduction.

Peroxydisulfate ions are capable of oxidizing virtually all functional groups, even hydrocarbons.5,6 Mechanistic studies have shown that there are two fundamentally different ways in which this species reacts. At low temperatures (25 °C) and in the absence of catalysts, its reactions are fast only with strong nucleophiles (phenolate ions, amines) and these proceed by simple polar mechanisms. Many other functional groups react so slowly under these conditions as to be essentially inert. At higher temperatures and/or in the presence of catalysts, rapid radical reactions ensue involving the species SO4-, the sulfate ion radical. Selectivity can usually be achieved even for this powerful oxidant by careful control of conditions. Peroxydisulfate may be used as a convenient source of peroxymonosulfate, via low-temperature acid-catalyzed hydrolysis, for use in processes such as the Baeyer-Villiger reaction.7 The use of the term persulfate should be avoided as it may be confused with peroxymonosulfate (Caro's acid; see Monoperoxysulfuric Acid).

Oxidation of Hydrocarbons.

Conditions for the oxidation of toluene and substituted toluenes can be adjusted, principally by variation in the catalyst (FeII, AgI, CuII) to yield benzaldehyde,8 -11 benzyl acetate,10,12-14 or benzyl bromide.12 Benzoic acids and bibenzyls are also formed.8 Regioselectivity in the oxidation of substituted xylenes has been achieved.15 Hexamethylbenzene and durene, among others, are converted in 70-90% yield to the corresponding benzyl alcohols via the benzyl nitrates.16 In the presence of acetates, substituted benzenes and naphthalene are acetoxylated,17,18 and conditions have been found for conversion of naphthalene to either 1-acetoxynaphthalene or a-(hydroxymethyl)naphthalene acetate.19 Benzene, fluorobenzene, and anisole may be hydroxylated.20,21 Quinones are formed from anthracenes, naphthalene, and phenanthrene.22,23 9-Methylanthracene gives lepidopterene in good yield (eq 1).24 Isopropylbenzene reacts with acetate in the presence of FeII (eq 2).25

Oxidation of Alkenes.

Glycol diacetates are produced when alkenes and acetates are treated with peroxydisulfate at 60-80 °C in the presence of CuII or FeII, sometimes with good stereocontrol.26-28 Perfluorochlorocarbons add to alkenes at a lower temperature in the presence of sodium formate (eq 3).29 A steroidal alkene is oxidized to a ketone (eq 4).30 Cyclohexene reacts with peroxydisulfate in acetonitrile-water at 60 °C to yield primarily cyclohexanol with a AgI or FeII catalyst, but forms cyclopentanecarbaldehyde or the carboxylic acid in the presence of CuII.31,32 Alkenes are methoxyselenated by reaction with Diphenyl Diselenide and peroxydisulfate in methanol,33 and certain alkenes undergo ring closure initiated by oxidation of diphenyl diselenide (eq 5), where X is an internal nucleophile.34 Similar reactions have been observed for one disulfide (bis(4-methoxyphenyl) disulfide).35 Quinolines, among other electrophiles, trap the radicals produced from alkenes to form adducts at either the 2- or 4-position.31,36 The etheno bridge of 1,N6-ethenoadenosine is smoothly removed by treatment with peroxydisulfate at pH 7 and 60 °C (eq 6).37 In the absence of metal ions, under aqueous acidic conditions, peroxydisulfate is hydrolyzed to Caro's acid,4 which then reacts with alkenes to yield trans-glycols.38

Oxidation of Alcohols.

Simple primary and secondary alcohols are quantitatively oxidized by peroxydisulfate to the corresponding aldehydes and ketones at 60-80 °C in the absence of catalysts. See also Dimethyl Sulfoxide, Dipyridine Chromium(VI) Oxide, Pyridinium Chlorochromate, Pyridinium Dichromate, Tetra-n-propylammonium Perruthenate, Cerium(IV) Ammonium Nitrate, Sodium Dichromate, Silver(I) Carbonate, Nitric Acid, Copper(I) Chloride-Oxygen, Lead(IV) Acetate, Nickel(II) Bromide, Chromium(VI) Oxide, Iodosylbenzene, and Sodium Hypochlorite. While it is possible to oxidize aldehydes to the corresponding carboxylic acids, this step is relatively slow and, in fact, the aldehyde acts as an inhibitor of further oxidation.39 Benzyl alcohols (and benzylamines) also give aldehydes under the same conditions,40 but, in the presence of NiII and ammonia at room temperature, the benzyl alcohols form the corresponding nitriles in excellent yield.41 Allylic alcohols can be smoothly converted to the corresponding carbonyl compounds without oxidation of the alkenic bonds by reaction in the presence of a NiII catalyst, but without ammonia.42 In the oxidation of a series of substituted 2-phenylethanols, the corresponding bibenzyls were obtained as well as the carbonyl compounds.43 The intermediate alkoxyl radicals can be trapped by methylquinolines (eq 7),44 by 4-cyanopyridine,45 or by N-methoxypyridinium fluoroborates.46 3-Phenylpropanol cyclizes to a tetrahydrofuran upon reaction with peroxydisulfate in the presence of CuII (eq 8).47 Geminal hydroxynitriles undergo rearrangement (eq 9)48 and a variety of vic-glycols are oxidized to the dicarbonyl compounds with AgI catalysis at moderate temperatures. Both cis- and trans-glycols react at about the same rate.49,50

Oxidation of Ethers.

Ethyl ether undergoes conversion in 60-85% yield to acetaldehyde at 60 °C in water, whereas THF and p-dioxane give vinyl ethers.51 See also Ruthenium(VIII) Oxide. 2,5-Diphenylfuran similarly gives a quantitative yield of cis-1,2-dibenzoylethylene (eq 10).52 The radical from p-dioxane, in addition to forming the vinyl ether, may be trapped by 4-methylquinoline.53

Oxidation of Aldehydes and Ketones.

Neither aldehydes nor ketones react rapidly with peroxydisulfate, except in the presence of a metal ion catalyst such as AgI. Aldehydes are oxidized to the corresponding carboxylic acids. Ketones form the carboxylic acids resulting from cleavage on either side of the carbonyl group.54 Thus benzaldehyde is converted in about 60% yield to benzoic acid using AgI in water at 45 °C.55 Other reactions occur with suitable radical traps. The g-nitriles are formed in good yield in the presence of Sodium Cyanide (eq 11).56 Similarly, acyl radicals may be trapped by quinolines57 or alkenes58 to form adducts in good yields.

Oxidation of Aliphatic Amines.

Aliphatic amines are converted in reasonable yield to the corresponding aldimines (eq 12),59 while the corresponding amino acids form aldehydes (eq 13).60 Benzylamine forms the aldimine in the absence of catalyst in 67% yield, but in the presence of NiII, benzonitrile is formed in 84-97% yield.61,62 This dehydrogenation of primary amines to the nitrile appears to be a general reaction. See also Lead(IV) Acetate, Nickel(II) Peroxide, Sodium Hypochlorite Copper(I) Chloride-Oxygen. Nitriles as well as other products are formed from primary amines using a CuII catalyst.63 Secondary amines yield a variety of products, generally in poor yield,60,64 but piperidines give good yields (40-60%) of 1,1-bipiperidines.65

Transformation of Carboxylic Acids to Peroxy Acids and Decarboxylation.

Carboxylic acids are converted (80-90% yield) to the corresponding peroxy acids at room temperature under phase-transfer conditions.66 See also Hydrogen Peroxide. With AgI catalysis at 60 °C the acids are decarboxylated, whereas with both AgI and CuII the main products are the alkenes and the alcohols.67,68 Under other conditions (TiIII), coupling products predominate, as found long ago by Fichter.69,70 Alkanoic acids with favorable alkyl substituents yield d- and g-lactones.71 Lactones can also be formed from certain aromatic systems (eq 14).72,73 The radicals formed during decarboxylation can be trapped by quinolines, pyridines, or quinones.74-77

Transformations of Amides.

Secondary and tertiary amides are dealkylated to the primary amides at 90 °C (eq 15),78,79 but 2-pyrrolidinone is oxidized under the same conditions to succinimide in 61% yield.80 Alkanesulfonamides undergo oxidation at the g-carbon (eq 16).81 Biphenyls with ortho-substituted secondary amide groups can give a variety of cyclization products (eq 17).82,83 N-Boc L-tyrosine derivatives, when treated with peroxydisulfate and CuII, yield the threo-b-hydroxy derivative via a cyclic carbamate (eq 18).84 The scope of this synthesis has been extended to related compounds.85

Oxidation of Phenols to Hydroquinones and of Aryl Amines to Aminophenols.

These phenols and arylamines undergo similar reactions in alkaline aqueous solution at rt in the absence of catalysts (the Elbs and Boyland-Sims oxidations) (eqs 19 and 20). The sulfate esters can be hydrolyzed to the corresponding phenols in acid. These reactions have been reviewed.1m The ortho-para distribution in the amine oxidation has been examined recently.86 The sulfate esters from the amine oxidation are accompanied by varying amounts of coupling products, which predominate in acid solution (see Table F in Behrman1m).

Oxidation of Sulfur Compounds.

Peroxydisulfate converts thiols to disulfides,87 sulfides to sulfoxides,88 and sulfoxides to sulfones.89 This last reaction, however, is very slow so that excellent yields of the sulfoxides are available from the sulfides. See also Hydrogen Peroxide, Sodium Periodate, t-Butyl Hypochlorite, Calcium Hypochlorite, Sodium Hypochlorite, Sodium Chlorite, Dimethyldioxirane, Nitric Acid, Sodium Perborate, and peroxy acids.


1. (a) Price, T. S. Per-Acids & Their Salts; Longmans Green: London, 1912. (b) Minisci, F.; Citterio, A.; Giordano, C. ACR 1983, 16, 27. (c) Sosnovsky, G. In Organic Peroxides; Swern, D., Ed.; Wiley: New York, 1971; Vol. 2, p 317. (d) Nikishin, G. I. In Organic Synthesis: Modern Trends; Chizhov, O., Ed.; Blackwell: Oxford, 1987. (e) Berlin, A. A.; Kislenko, V. N. Okislenie Organischeskikh Soedinenii Persulfatom; Lvov: SVIT, 1991. (f) Buist, G. J. In Comprehensive Chemical Kinetics; Bamford, Tipper, Eds.; 1972, 6, 456. (g) Kislenko, V. N.; Berlin, A. A. JGU 1989, 59, 1. (h) Wurziger, H. Kontakte 1987, 31 (CA 1988, 108, 130 652y). (i) Ogibin, Y. N. Mendeleev Chem. J. 1979, 24 (2), 118. (j) Ogawa, K.; Nomura, Y. Yuki Gosei Kagaku Kyokaishi 1984, 42, 98 (CA 1984, 100, 138 201f). (k) House, D. A. CRV 1962, 62, 185. (l) Minisci, F.; Citterio, A. Adv. Free Radical Chem. 1980, 6, 65. (m) Behrman, E. J. OR 1988, 35, 421.
2. Hu, T.; Hepler, L. G. CED 1962, 7, 58. Balej, J., Electrochim. Acta 1984, 29, 1239.
3. Dehmlow, E. V.; Vehre, B.; Makrandi, J. K. ZN(B) 1985, 40, 1583.
4. Behrman, E. J.; Edwards, J. O. Rev. Inorg. Chem. 1980, 2, 179.
5. Parliment, T. H.; Parliment, M. W.; Fagerson, I. S. CI(L) 1966, 1845. Dhar, D. N.; Munjal, R. C. S 1973, 542.
6. Moritz, C.; Wolffenstein, R. CB 1899, 32, 432.
7. Lin, M.; Sen, A. CC 1992, 892.
8. Bacon, R. G. R.; Doggart, J. R. JCS 1960, 1332.; Austin, P. C. JCS 1911, 99, 262.
9. Firouzabadi, H.; Salehi, P., Sardarian, A. R.; Seddighi, M. SC 1991, 21, 1121.
10. Walling, C.; Zhao, C.; El-Taliawi, G. M. JOC 1983, 48, 4910.
11. Bhatt, M. V.; Perumal, P. T. TL 1981, 22, 2605.
12. Citterio, A.; Santi, R.; Pagani, A. JOC 1987, 52, 4925.
13. Jönsson, L.; Wistrand, L.-G. JCS(P1) 1979, 669.
14. Belli, A.; Giordano, C.; Citterio, A. S 1980, 477.
15. Hauser, F. M.; Ellenberger, S. R. S 1987, 723.
16. Cort, A. D.; Mandolini, L.; Panaioli, S. SC 1988, 18, 613.
17. Eberson, L.; Jönnson, L. LA 1977, 233; ACS 1976, 30B, 361.
18. Nyberg, K.; Wistrand, L.-G. ACS 1975, 29B, 629.
19. Giordano, C.; Belli, A.; Citterio, A.; Minisci, F. JOC 1979, 44, 2314.
20. Walling, C.; Camaioni, D. M.; Kim, S. S. JACS 1978, 100, 4814.
21. Eberhardt, M. K. J. Phys. Chem., 1977, 81, 1051; JOC 1977, 42, 832.
22. Skar&zbreve;ewski, J. T 1984, 40, 4997.
23. Camaioni, D. M.; Alnajjar, M. S. JOC 1985, 50, 4456.
24. Deardurff, L. A.; Camaioni, D. M. JOC 1986, 51, 3693.
25. Giordano, C.; Belli, A.; Citterio, A.; Minisci, F. T 1980, 36, 3559.
26. Citterio, A.; Arnoldi, C.; Giordano, C.; Castaldi, G. JCS(P1) 1983, 891.
27. Fristad, W. E.; Peterson, J. R. T 1984, 40, 1469.
28. Nikishin, G. I.; Ogibin, Y. N.; Rakhmatullina, L. K. BAU 1974, 23, 1479.
29. Hu, C.-M.; Qing, F.-L. JOC 1991, 56, 6348.
30. Shafiullah; Ansari, M. R.; Husain, S.;, Siddiqui, I. H. JIC 1990, 67, 970.
31. Arnoldi, C.; Citterio, A.; Minisci, F. JCS(P2) 1983, 531.
32. Perumal, P. T. SC 1990, 20, 1353.
33. Tiecco, M.; Testaferri, L.; Tingoli, M.; Chianelli, D.; Bartoli, D. TL 1989, 30, 1417.
34. Tiecco, M.; Testaferri, L.; Tingoli, M.; Bartoli, D.; Balducci, R. JOC 1990, 55, 429.
35. Tiecco, M.; Tingoli, M.; Testaferri, L.; Balducci, R. JOC 1992, 57, 4025.
36. Clerici, A.; Minisci, F.; Ogawa, K.; Surzur, J.-M. TL 1978, 1149.
37. Sako, M.; Hayashi, T.; Hirota, K.; Maki, Y. CPB 1992, 40, 1656.
38. Kennedy, R. J.; Stock, A. M. JOC 1960, 25, 1901.
39. Ball, D. L.; Crutchfield, M. M.; Edwards, J. O. JOC 1960, 25, 1599; McIsaac, J. E.; Edwards, J. O. JOC 1969, 34, 2565. Gallopo, A. R.; Edwards, J. O. JOC 1971, 36, 4089.
40. Horii, Z.-I.; Sakurai, K.-I.; Tomino, K.; Konishi, T. YZ 1956, 76, 1101.
41. Yamazaki, S.; Yamazaki, Y. CL 1990, 571.
42. Yamazaki, S.; Yamazaki, Y. CL 1989, 1361.
43. Ledwith, A.; Russell, P. J.; Sutcliffe, L. H. JCS(P2) 1973, 630.
44. Buratti, W.; Gardini, G. P.; Minisci, F.; Bertini, F.; Galli, R.; Perchinunno, M. T 1971, 27, 3655.
45. Clerici, A.; Porta, O. JCS(P2) 1980, 1234.
46. Katz, R. B.; Mistry, J.; Mitchell, M. B. SC 1989, 19, 317.
47. Walling, C.; El-Taliawi, G. M.; Zhao, C. JOC 1983, 48, 4914.
48. Ogibin, Y. N.; Makhova, I. V.; Gorozhankin, S. K.; Nikishin, G. I. BAU 1984, 33, 2099.
49. Greenspan, F. P.; Woodburn, H. M. JACS 1954, 76, 6345.
50. Huyser, E. S.; Rose, L. G. JOC 1972, 37, 851.
51. Curci, R.; Delano, G.; DiFuria, F.; Edwards, J. O.; Gallopo, A. R. JOC 1974, 39, 3020.
52. Eberhardt, M. K. JOC 1993, 58, 497.
53. Buratti, W.; Gardini, G. P.; Minisci, F.; Bertini, F.; Galli, R.; Perchinunno, M. T 1971, 27, 3655.
54. Khulbe, K. C.; Srivastava, S. P., Agra Univ. J. Res. 1964, 13, 65.
55. Srivastava, S. P.; Maheshwari, G. L.; Singhal, S. K. IJC 1974, 12, 72.
56. Nikishin, G. I.; Troyansky, E. I.; Misintsev, V. V.; Molokanov, A. N.; Ogibin, Y. N. TL 1986, 27, 4215.
57. Citterio, A.; Gentile, A.; Serravalle, M.; Tinucci, L.; Vismara, E. JCR(S) 1982, 272; JCR(M) 1982, 2801.
58. Citterio, A.; Ferrario, F.;, DeBernardinis, S. JCR(S) 1983, 310.
59. Bacon, R. G. R.; Stewart, D. JCS(C) 1966, 1384.
60. Bacon, R. G. R.; Hanna, W. J. W.; Stewart, D. JCS(C) 1966, 1388.
61. Yamazaki, S.; Yamazaki, Y. BCJ 1990, 63, 301.
62. Lee, J. B.; Parkin, C.; Shaw, M. J.; Hampson, N. A.; MacDonald, K. I. T 1973, 29, 751.
63. Troyanskii, E. I.; Ioffe, V. A.; Svitan'ko, I. V.; Nikishin, G. I. BAU 1983, 32, 2299.
64. Troyanskii, E. I.; Ioffe, V. A.; Nikishin, G. I. BAU 1985, 34, 1656.
65. Ogawa, K.; Nomura, Y.; Takeuchi, Y; Tomoda, S. JCS(P1) 1982, 3031.
66. Pande, C. S.; Jain, N. SC 1988, 18, 2123.
67. Anderson, J. M.; Kochi, J. K. JACS 1970, 92, 1651.
68. Fristad, W. E.; Fry, M. A.; Klang, J. A. JOC 1983, 48, 3575.
69. Norman, R. O. C.; Storey, P. M. JCS(B) 1970, 1099.
70. Eberson, L.; Gränse, S.; Olofsson, B. ACS 1968, 22, 2462.
71. Nikishin, G. I.; Svitanko, I. V.; Troyansky, E. I. JCS(P2) 1983, 595. Tiecco, M.; Testaferri, L.; Tingoli, M. T 1993, 49, 5351.
72. Mansuy, D. CR(C) 1975, 280C, 893.
73. Bertrand, M. P.; Oumar-Mahamat, H.; Surzur, J. M. TL 1985, 26, 1209.
74. Fontana, F.; Minisci, F.; Barbosa, M. C. N.; Vismara, E. T 1990, 46, 2525.
75. Jacobsen, N.; Torssell, K. LA 1972, 763, 135; ACS 1973, 27, 3211.
76. Jacobsen, N. OS 1977, 56, 68.
77. Sharma, S. C.; Torssell, K. ACS 1978, 32B, 347.
78. Needles, H. L.; Whitfield, R. E. CI(L) 1966, 287.
79. Needles, H. L.; Whitfield, R. E. JOC 1964, 29, 3632.
80. Needles, H. L.; Whitfield, R. E. JOC 1966, 31, 341.
81. Troyanskii, E. I.; Lazareva, M. I.; Lutsenko, A. I.; Nikishin, G. I. BAU 1986, 35, 1316.
82. Hey, D. H.; Jones, G. H.; Perkins, M. J. JCS(P1) 1972, 118.
83. Forrester, A. R.; Ingram, A. S.; Thomson, R. H. JCS(P1) 1972, 2847.
84. Shimamoto, K.; Ohfune, Y. TL 1988, 29, 5177.
85. Irie, H.; Maruyama, J.; Shimada, M.; Zhang, Y.; Kouno, I.; Shimamoto, K.; Ohfune, Y. SL 1990, 421.
86. Behrman, E. J. JOC 1992, 57, 2266.
87. Kolthoff, I. M.; Miller, I. K. JACS 1951, 73, 5118.
88. Srinivasan, C.; Subramaniam, P.; Radha, S. IJC(B) 1987, 26, 193.
89. Behrman, E. J. J. Phys. Chem. 1985, 89, 2964.

Edward J. Behrman

The Ohio State University, Columbus, OH, USA



Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.