Allyl Chloride1

[107-05-1]  · C3H5Cl  · Allyl Chloride  · (MW 76.53)

(allylating agent which attacks C, O, N, S, Se, Te nucleophiles; organometallic derivatives provide homoallyl alcohols; expected electrophilic addition reactions)

Physical Data: mp -136.4 °C; bp 44.6 °C; d 0.938 g mL-1.

Solubility: miscible with organic liquids.

Form Supplied in: colorless liquid, discoloring on standing and exposure to air.

Purification: wash with concd HCl, then with aq Na2CO3 and dry (CaCl2). Impurities include isomers and chloropropanes; efficient fractional distillation is essential.2a

Handling, Storage, and Precautions: volatile, flammable, toxic, irritant, alkylating agent.

Usually manufactured by high temperature chlorination of propene;2b hence the incidence of isomeric and polychlorinated impurities. Allyl chloride allylates ethyl acetoacetate derivatives (40% aq KOH, Bu4NBr, rt, 3 h) to give 2,2-diallyl analogs (92% yield, 97% pure).3 Malonic esters are similarly alkylated under dehydrating conditions (RCl, Bu4NBr, NaOH in PhMe).4 Alkyl carboxylic acids may be allylated at the a-position when the Na salt (NaH-xylene, 135 °C, 2 h) is treated with Lithium Diethylamide at 125-135 °C until loss of Et2NH is complete, followed by treatment with RCl at ~85 °C over some hours.5 Ruthenium or osmium s-acetylide complexes (e.g. 1)6 undergo allylation (at the alkyne system). Some such substitutions (e.g. methanolysis) are apparently Cu catalyzed;7,8 an example is the formation of 3-allylpentane-2,4-dione (72%), when Cu + Cu(ClO4)2 is added to the reagents in Et2O (eq 1).8

In the presence of peroxides (e.g. 1,1-Di-t-butyl Peroxide) crown ethers add to allyl chloride via the a-hydrogen abstracted radical to form, for example, 2-(3-chloropropyl)-1,4,7,10-tetraoxacyclododecane (2; R = Cl(CH2)3). While the yields are poor (8-10%) the product is apparently isolable,9 and affords a route to functionalized crown ethers.

The reductive allylation process (eq 2) occurs with aldehydes in the presence of Bi,10a,10b Al/BiCl3,10b,10c Al/PbBr2,11 Zn,12 and Fe/BiCl3.10b Acid chlorides in the presence of Cp2Sm afford allyl ketones.13 Dry stirring Magnesium turnings in an inert atmosphere greatly promotes the formation of allylmagnesium chloride without the formation of biallyl and similar products.14 In addition to the expected range of Grignard reactions based upon allylmagnesium chloride, allyl chloride reacts with Lithium Diisopropylamide to form a-chloroallyllithium, which undergoes the expected reactions with RCl, RCHO, R3SiCl, and R3SnCl (eq 3).15

Allyllithium (RLi) itself is made by cleavage of RSnPh3 (from RBr, Mg, and Ph3SnCl)16a,16b or of allyl aryl ethers (Li, THF, -15 °C) (eq 4).16c

The protected glycine ester derivative (3a) affords a reagent with 2LiCl.CuCN which allylates with allyl chloride to give the product (3b) without loss of the stereochemical identity at the carbon atom a to the protected amino group (eq 5).17 Allyl chloride also alkylates glycine chiral ester Schiff bases in the presence of chiral Pd complexes.18 The allylation of the monomenthyl ester of cyclopentane-1,2-dicarboxylic acid by RCl (R = allyl) gives the compound (4) in which the allyl halide has approached from the more hindered side of the molecule. Allyl tosylate gives the sterically preferred orientation; the differences in behavior are rationalized in terms of interaction between the Li of the enolate reagent and the Cl of RCl.19

Traditional nucleophilic attack is represented by reaction with ArO- in the synthesis of allyl aryl ethers in a study of the Claisen reaction,20 and with Sodium Sulfide to give R2S,21 and in the analogous preparation of R2Te.22 Friedel-Crafts allylation of benzene represents an alternative route to the synthesis of propylbenzene after hydrogenation, since rearrangement occurs when propyl halides are subject to this reaction; hydrated Iron(III) Chloride proved to be a gentle, if inefficient, catalyst for such allylations.23

The use of Ru or Rh chlorides on polyethylenimine to promote the addition of CXCl3 to unsaturated systems such as allyl chloride (eq 6) extends the older application of Lewis acids such as Aluminum Chloride.24 The addition of Diborane to allyl chloride provides (g-chloropropyl)boranes which then provide cyclopropane;25a with Sodium Amide, allyl chloride gives cyclopropene (low yield).25b

Related Reagents.

Allyl Bromide; Allyl Iodide.


1. (a) Kneupper, C.; Saathoff, L. In Kirk-Othmer Encycl. Chem. Technol.; Wiley: New York, 1993; Vol. 6, p 59. (b) Anon. Dangerous Prop. Ind. Mater. Rep. 1988, 8, 20 (CA 1988, 108, 191 764h).
2. (a) Oae, S.; Van der Werf, C. A. JACS 1953, 75, 2724. (b) Spadlo, M.; Stajszczyk, M.; Wasilewski, J.; Pokorska, Z.; Madej, W. Chem. Tech. (Leipzig) 1988, 40, 109 (CA 1988, 108, 206 630n). (c) Spadlo, M.; Stajszczyk, M.; Pokorska, Z.; Wasilewski, J.; Szendzielorz, J.; Madej, W.; Lewandowski, G.; Lauer, A.; Wilusz, T.; Wojcik, E. Pol. Patent 136 334, 1987 (CA 1991, 114, 26 157d).
3. Yamamoto, T.; Yamashita, A.; Numoto, N. Ger. Patent 3 636 818, 1987 (CA 1987, 107, 58 505n).
4. (a) Yamamoto, T. Jpn. Patent 62 175 438, 1987 (CA 1988, 108, 94 076c). (b) Wu, G.; Huang, X. Youji Huaxue 1991, 11, 431 (CA 1991, 115, 207 182z).
5. Bouisset, M.; Bousquet, A.; Heymes, A. Fr. Patent 2 599 737, 1987 (CA 1988, 109, 92 281n).
6. Bruce, M. I.; Humphrey, M. G. AJC 1989, 42, 1067.
7. (a) Kurtz, P. LA 1962, 658, 6. (b) Baruah, J. B.; Samuelson, A. G. CC 1987, 36.
8. Baruah, J. B.; Samuelson, A. G. JOM 1989, 361, C57.
9. Zelechonok, Yu. B.; Orlovskii, V. V.; Zelechonok, S. F.; Zlotskii, S. S.; Rakhmankulov, D. L. KGS 1990, 137 (CA 1990, 113, 78 365u).
10. (a) Wada, M.; Ohki, H.; Akiba, K. TL 1986, 27, 4771. (b) Fukase, K.; Oda, Y.; Kubo, A.; Wakamiya, T.; Shiba, T. BCJ 1990, 63, 1758. (c) Wada, M.; Ohki, H.; Akiba, K. CC 1987, 708.
11. (a) Tanaka, H.; Yamashita, S.; Hamatani, T.; Ikemoto, Y.; Torii, S. SC 1987, 17, 789. (b) Torii, S.; Tanaka, H.; Yamashita. S. Jpn. Patent 63 222 123, 1988 (CA 1989, 111, 56 596b).
12. Tashiro, K.; Tanaka, K. Jpn. Patent 63 33 344, 1988 (CA 1989, 110, 23 327r).
13. Collin, J.; Bied, C.; Kagan, H. B. TL 1991, 32, 629.
14. (a) Baker, K. V.; Brown, J. M.; Hughes, N.; Skarnulis, A. J.; Sexton, A. JOC 1991, 56, 698. (b) Oppolzer, W.; Schneider, P. TL 1984, 25, 3305. (c) Benkeser, R. A. S 1971, 347.
15. Julia, M.; Verpeaux, J.-N.; Zahneisen, T. SL 1990, 769.
16. (a) Seyferth, D.; Weiner, M. A. OSC 1973, 5, 452. (b) Seyferth, D.; Weiner, M. A. JOC 1959, 24, 1395. (c) Eisch, J. J.; Jacobs, A. M. JOC 1963, 28, 2145.
17. Dunn, M. J.; Jackson, R. F. W. CC 1992, 319.
18. Genet, J. P.; Kopola, N.; Juge, S.; Ruiz-Montas, J.; Antunes, O. A. C.; Tanier, S. TL 1990, 31, 3133.
19. Kigoshi, H.; Imamura, Y.; Yoshikawa, K.; Niwa, H.; Yamada, K. TL 1991, 32, 4541.
20. Hayashi, T.; Okada, Y.; Inaba, T. JCR(S) 1991, 172.
21. Kolta, R.; Mihalszky, K.; Cseko, I.; Leiki, G.; Szalay, P.; Fazekas, D. Hung. Patent 39 423, 1986 (CA 1987, 107, 58 501h).
22. Kirss, R. U.; Brown, D. W.; Higa, K. T.; Gedridge, R. W., Jr. OM 1991, 10, 3589.
23. Gevorkyan, A. A.; Arakelyan, A. S.; Dzhaninyan, A. A.; Panosyan, G. A. Arm. Khim. Zh. 1988, 41, 215 (CA 1989, 110, 23 414s).
24. Kobrakov, K. I.; Popandopulo, N. G.; Perchenko, V. N.; Abubakirov, R. Sh.; Shvekhgeimer, G. A. Neftekhimiya 1991, 31, 66 (CA 1991, 115, 28 674q).
25. (a) Hawthorne, M. F. JACS 1960, 82, 1886. (b) Closs, G. L.; Krantz, K. D. JOC 1966, 31, 638.

Roger Bolton

University of Surrey, Guildford, UK



Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.