Acrylic Acid

[79-10-7]  · C3H4O2  · Acrylic Acid  · (MW 72.06)

(acylating agent, electrophile in 1,4-addition reactions, dienophile in Diels-Alder reactions)

Alternate Name: propenoic Acid.

Physical Data: mp -13 °C; bp 139 °C; d 1.051 g cm-3; nD 1.4224.

Solubility: miscible with water, alcohol, ether, acetone, and benzene.

Form Supplied in: colorless liquid (stabilized with 200 ppm hydroquinone monomethyl ether); widely available.

Purification: can be purified by steam distillation, or vacuum distillation through a column packed with copper gauze to inhibit polymerization (this treatment also removes inhibitors such as methylene blue that may be present). Azeotropic removal of the water with benzene converts wet acrylic acid into the anhydrous material.

Handling, Storage, and Precautions: polymerization occurs readily in the presence of oxygen. The liquid is toxic, corrosive, has an acrid odor, and fumes. Use in a fume hood.

Deuterated Acrylic Acid.

(Z)- and (E)-3-deuterioacrylic acids can be obtained from a stereospecific sodium amalgam reduction of the corresponding (Z)- and (E)-3-bromoacrylic acids in the presence of D2O.1

Reactions of the Carboxylic Acid Group.

Conversion of acrylic acid to acryloyl chloride2 and to the mixed anhydride using Acetic Anhydride have been achieved. Subsequent reaction with alcohols and amines gives esters and amides. Other mild reaction conditions to activate the carboxyl group are known.4 For example, DCC/DMAP(cat)/alcohol5 and DEAD/Ph3P/alcohol systems6 have been used successfully. Using 1,3-Dicyclohexylcarbodiimide, the reactive intermediate rearranges to an amide in the absence of an external nucleophile.7 Preparation of the amide by treatment with an in situ prepared phosphazo compound,8 and amidation catalyzed by Ph3SbO-P4S10 in the presence of an amine,9 are among the mildest methods available. The amide and ester adducts have frequently been used as dienophiles (achiral and chiral) in Diels-Alder reactions.5-7 Synthesis of the analogous thiocarboxylic S-acid under mild conditions is best achieved using the Ph3SbO-P4S10 sulfuration system (eq 1).10

Reactions with the Double Bond.

Functional group transformations of the double bond have also been explored. Selective reduction of the double bond has been achieved in the presence of a variety of catalytic systems. RhII/H2,11 Mo0/PhSiH3,12 and PdII/H213 based systems give high yields and are extremely selective. Treatment of acrylic acid with hydrochloric acid gives 3-chloropropanoic acid,14 while the Meerwein arylation with an arenediazonium ion yields the corresponding a-bromohydrocinnamic acid derivative.15 Cyclopropanation using MeLi/LiBr and CH2Cl2 yields mixtures of halocyclopropyl ketones and alcohols in very good yield.16 Regioselective hydrogermylation with trichlorogermane in concentrated hydrochloric acid provides exclusively 3-trichlorogermylpropanoic acid (eq 2).17

The preparation of succinic acid has been achieved from acrylic acid via a regioselective nickel catalyzed b-hydrocarboxylation.18 Recently, methylmalonic acid was prepared via an a-hydrocarboxylation. Using a catalytic amount of Pentacarbonyliron in the presence of Ca(OH)2/i-PrOH/H2O, under a CO atmosphere, the diacid was obtained in good yield (eq 3).19 Oxidation of the double bond to give glyceric acid has been achieved using permanganate oxidation.20

Cross Coupling Reactions.

Substituted acrylic acids are obtained via a palladium-catalyzed coupling of aryl or vinyl halides with acrylic acid (Heck reaction).21 The reaction proceeds in organic22 as well as aqueous23 media (eq 4). Similar products are obtained when vinylmercury(II) chlorides are treated with acrylic acid in the presence of a stoichiometric amount of palladium (eq 5).24

Addition Reactions to the Double Bond.

Acrylic acid can serve as a Michael acceptor in its reactions with alcohols,25 thiols,26 sulfinates,27 and phospines.28 Addition of p-toluenesulfinate provides 3-(p-toluenesulfonyl)propanoic acid, which has been used as a b-acyl anion equivalent upon double deprotonation with n-Butyllithium at -78 °C.27b

The acidity of acrylic acid precludes various nucleophilic addition strategies due to protonation of the nucleophile. While dialkylcopper reagents (R2CuLi) do not react with acrylic acids, RCu.BF3 are known to add to substituted acid derivatives.29 Acrylic acid also undergoes an ene reaction with Isobutene to yield the corresponding adduct in 51% yield.30 The double bond in acrylic acid can also serve as a radical acceptor. Optically active alanyl radical reacts with acrylic acid to yield aminoadipic acid with no racemization observed (eq 6).31

Diels-Alder Reaction.

Although acrylic acid has not been as widely used in Diels-Alder reactions as other simple dienophiles, a variety of dienes undergo cycloaddition with acrylic acid. Alkyl-,32 silyl-,33 and acetoxy-substituted34 butadienes, various substituted furans,35 cyclopentadienes,36 cyclohexadienes,37 anthracenes,38 and pyridones39 are among the dienes shown to react successfully with acrylic acid.40 Cyclohexenes, (oxa) bicyclic compounds, and heterocyclic adducts are obtained. The ortho and para regioisomers usually predominate in reactions of acrylic acid with 1- and 2-substituted butadienes, respectively.32,41 While the endo to exo selectivity may vary from poor to good (depending on the diene), repeated fractional recrystallizations of the carboxylic acid adducts often lead to pure products.34a,35b Generally, the reactions require stirring for several days at room temperature35 or, when the product is thermally stable, heating at 100-160 °C for several hours in the presence of hydroquinone (a polymerization inhibitor). Catalysis using CuI has been reported, while attempted catalysis using Lewis acids such as iron(III) chloride, tin(IV) chloride, and zinc chloride resulted in polymerization.35a Recently, Diborane has been shown to catalyze cycloadditions of acrylic acid via acyloxyboranes.34b,42 For example, addition of 10 mol% of the Borane-Tetrahydrofuran complex to the acrylic acid at 0 °C, followed by the diene at -78 °C, resulted in the fast formation of the Diels-Alder adduct. Precomplexation of the borane-THF complex with a monoacylated tartaric acid at 0 °C resulted in the formation of a chiral acyloxyborane, which mediated the reaction between acrylic acid and cyclopentadiene, to give the adduct with 78% enantiomeric excess (eq 7).

Dipolar cycloadditions with acrylic acid are known but not widely used in synthesis.43


1. Crout, D. H. G.; Corkill, J. A. TL 1977, 49, 4355.
2. Rehberg, C. E.; Dixon, M. B.; Fisher, C. H. JACS 1945, 67, 208.
3. (a) Hurtel, P.; Denis, L.; Joseph, R. Fr. Patent 2 592 040, 1987 (CA 1988, 108, 22432t). (b) El-Shorbagi, A.-N.; Sakai, S.-i.; El-Gendy, M. A.; Omar, N.; Farag, H. H. CPB 1989, 37, 2971.
4. Poll, T.; Hady, A. F. A.; Karge, R.; Linz, G.; Weetman, J.; Helmchen, G. TL 1989, 30, 5595 and references therein.
5. Birtwistle, D. H.; Brown, J. M.; Foxton, M. W. T 1988, 44, 7309.
6. Hashimoto, Y.; Saigo, K.; Machida, S.; Hasegawa, M. TL 1990, 31, 5625.
7. Kishikawa, K.; Yamamoto, M.; Kohmoto, S.; Yamada, K. JOC 1989, 54, 2428.
8. Cabral, J.; Laszlo, P.; Montaufier, M.-T.; Randriamahefa, S. L. TL 1990, 31, 1705.
9. Nomura, R.; Nakano, T.; Yamada, Y.; Matsuda, H. JOC 1991, 56, 4076.
10. Nomura, R.; Miyazaki, S.-i.; Nakano, T.; Matsuda, H. CB 1990, 123, 2081.
11. Noriyuki, K.; Reiko, I. J. Mol. Catal. 1992, 75, 15.
12. Keinan, E.; Perez, D. JOC 1987, 52, 2576.
13. Ali, H. M.; Naiini, A. A.; Brubaker, C. H., Jr. TL 1991, 32, 5489.
14. Rondestvedt, C. S., Jr. OR 1960, 11, 189.
15. Cleland, G. H. OS 1971, 51, 1.
16. Barlet, R.; Baharmast, B.; Vidal, M. CJC 1991, 69, 489.
17. Kakimoto, N.; Akiba, M.; Takada, T. S 1985, 272.
18. Reppe, W. U.S. Patent 2 604 490, 1952 (CA 1953, 47, 5603).
19. Brunet, J.-J.; Passelaigue, E. OM 1990, 9, 1711.
20. (a) Freeman, F.; Kappos, J. C. JACS 1985, 107, 6628. (b) Perez-Benito, J. F.; Lee, D. G. JOC 1987, 52, 3239 and references therein.
21. Heck, R. F. Palladium Reagents in Organic Syntheses; Academic Press: London, 1985 and references therein.
22. Alabaster, R. J.; Cottrell, I. F.; Hands, D.; Humphrey, G. R.; Kennedy, D. J.; Wright, S. H. B. S 1989, 598.
23. Bumagin, N. A.; More, P. G.; Beletskaya, I. P. JOM 1989, 371, 397.
24. Larock, R. C.; Leuck, D. J.; Harrison, L. W. TL 1987, 28, 4977.
25. Huskens, J.; Peters, J. A.; Van Bekkum, H. TL 1993, 49, 3149.
26. (a) Hurd, C. D.; Gershbein, L. L. JACS 1947, 69, 2328. (b) Cadamuro, S.; Degani, I.; Fochi, R.; Regondi, V. S 1986, 1070. (c) Ponticello, G. S.; Freedman, M. B.; Habecker, C. N.; Holloway, M. K.; Amato, J. S.; Conn, R. S.; Baldwin, J. J. JOC 1988, 53, 9.
27. (a) Kamogawa, H.; Kusaka, H.; Nanasawa, M. BCJ 1980, 53, 3379. (b) Bonete, P.; Nájera, C. TL 1992, 33, 4065.
28. Larpent, C.; Patin, H. T 1988, 44, 6107.
29. Yamamoto, Y.; Yamamoto, S.; Yatagai, H.; Ishihara, Y.; Maruyama, K. JOC 1982, 47, 119.
30. Albisetti, C. J.; Fisher, N. G.; Hogsed, M. J.; Joyce, R. M. JACS 1956, 78, 2637.
31. Adlington, R. M.; Baldwin, J. E.; Basak, A.; Kozyrod, R. P. CC 1983, 944.
32. Cahiez, G.; Rivas-Enterrios, J.; Clery, P. TL 1988, 29, 3659.
33. Shea, K. J.; Staab, A. J.; Zandi, K. S. TL 1991, 32, 2715.
34. (a) Balasubramanian, S.; Abell, C.; Coggins, J. R. JACS 1990, 112, 8581. (b) Barrett, A. G. M.; Barta, T. E.; Flygare, J. A.; Sabat, M.; Spilling, C. D. JOC 1990, 55, 2409.
35. (a) Moore, J. A.; Partain, E. M. III. JOC 1983, 48, 1105. (b) Tochtermann, W.; Schröder, G.-R.; Snatzke, G.; Peters, E.-M.; Peters, K.; von Schnering, H. G. CB 1988, 121, 1625.
36. (a) Stille, J. R.; Santarsiero, B. D.; Grubbs, R. H. JOC 1990, 55, 843. (b) Gössinger, E.; Müller, R. T 1989, 45, 1377.
37. Coxon, J. M.; O'Connell, M. J.; Steel, P. J. JOC 1987, 52, 4726.
38. Alston, P. V.; Ottenbrite, R. M.; Newby, J. JOC 1979, 44, 4939.
39. Tomisawa, H.; Hongo, H.; Hatano, T.; Nakano, H.; Fujita, R. CPB 1987, 35, 530.
40. For a review, see: Fringuelli, F.; Taticchi, A. Dienes in the Diels-Alder Reaction; Wiley: New York, 1990.
41. Alston, P. V.; Ottenbrite, R. M.; Guner, O. F.; Shillady, D. D. T 1986, 42, 4403.
42. Furuta, K.; Miwa, Y.; Iwanaga, K.; Yamamoto, H. JACS 1988, 110, 6254.
43. Breuer, E.; Aurich, H. E.; Nielsen, A. T. Nitrones, Nitronates and Nitroxides; The Chemistry of Functional Groups; Patai, S.; Rappoport, Z. Eds.; Wiley: New York, 1989.

Patrick H. M. Delanghe & Mark Lautens

University of Toronto, Ontario, Canada



Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.