p-Acetamidobenzenesulfonyl Azide

[2158-14-7]  · C8H8N4O3S  · p-Acetamidobenzenesulfonyl Azide  · (MW 240.24)

(reagent for diazo function transfer to activated methylene groups;1 can functionalize double bonds by cycloaddition reactions9,10)

Alternate Name: p-ABSA.

Physical Data: mp 106-108 °C;1 112-114 °C.2 Decomposition begins at about 120 °C in an open cup system.

Solubility: sol CH2Cl2; sparingly sol toluene; insol petroleum ether.

Form Supplied in: colorless or slightly brown crystals.

Analysis of Reagent Purity: 1H NMR, IR, elemental analysis.

Preparative Methods: the title reagent can be prepared by nitrosation of p-acetamidobenzenesulfonyl hydrazide,2,3 by reaction of p-acetamidobenzenesulfonyl chloride with Sodium Azide in acetone solution,1 or more conveniently under phase transfer conditions with CH2Cl2/water in the presence of tetraethylammonium chloride1 or with benzene/water in the presence of Aliquat 336 (99% yield at rt in 0.5 h).4

Purification: recrystallization from toluene.

Handling, Storage, and Precautions: relatively safe reagent and no special instructions for its storage and handling are mentioned in the literature. Proper caution should be used as with all azide reagents. Use in a fume hood.

Diazo Transfer Reagent.

p-Acetamidobenzenesulfonyl azide offers some advantages in safety and ease of product separation and was recommended1,5 as an alternative and substitute for the standard reagent, p-Toluenesulfonyl Azide,6 in diazo transfer chemistry. The reaction times with p-ABSA are longer than with other azides.1a

Thus far, the reagent has only been employed in the direct transfer of a diazo function to methylene groups flanked by one or two carbonyls.

Well-known diazodicarbonyl compounds, including diazodimedone, diazoisopropylidenemalonic acid, diazomalonic, and diazoacetoacetic acid esters1 as well as optically active esters of diazoacetoacetic acid (eq 1)5 are readily available from p-ABSA and Et3N in good yields (72-95%).

In the presence of a stronger base (Sodium Ethoxide in ethanol) the p-acetamidobenzenesulfonyl amide of diazomalonic acid ethyl ester was obtained as the major product from diethyl malonate.3

p-ABSA also proves to be a versatile and effective reagent for the synthesis of various vinyldiazomethanes with one or two electron withdrawing groups (EWG) (eq 2).1,7,8 When two EWG are in a parent substrate, Triethylamine is usually an effective base,1,7 but with less acidic systems, 1,8-Diazabicyclo[5.4.0]undec-7-ene is required for good yields of vinyldiazomethanes.8 The presence of a vinyl group apparently enhances the transformation.1

Activation of a methylene by one carbonyl group as in dihydro-2-indolone, affords a relatively low yield of diazoindolone (39%) with p-ABSA and Et3N as the base.1a

Functionalization of Double Bonds.

Nucleophilic double bonds of indole, N-methylindole, and tetrahydropyridine readily add to the 1,3-dipole moiety of p-ABSA to give, as the final products, indolidylidene-9 and piperidylidene-2-arylsulfonamides (eq 3)10 in good yields.

Nitrenogenic Source.

Catalytic decomposition of p-ABSA by platinum(II) complexes,11 thermolysis at fairly high temperatures (above 130-150 °C) in o- and p-xylenes, N,N-dimethylaniline,2 or pyridine,2,12 and reaction with triphenylstibine13 gives rise to the formal insertion or addition products of p-acetamidobenzenesulfonylnitrene into the corresponding substrates in good to moderate yields.

Related Reagents.

p-Dodecylbenzenesulfonyl Azide; Methanesulfonyl Azide; p-Toluenesulfonyl Azide.


1. (a) Baum, J. S.; Shook, D. A.; Davies, H. M. L.; Smith, H. D. SC 1987, 17, 1709. (b) Davies, H. M. L.; Cantrell, W. R.; Romines, K. R.; Baum, J. S. OS 1992, 70, 93.
2. Cremlyn, R. J. W. JCS 1965, 1132.
3. Curtius, T.; Stoll, W. JPR 1926, 112, 117.
4. Draganov, A.; Bozhinov, V. Dokl. Bulgar. 1987, 40, 61 (CA 1988, 108, 186280t).
5. Hatch, C. E.; Baum, J. S.; Takashima, T.; Kondo, K. JOC 1980, 45, 3281.
6. Regitz, M.; Maas, G. Diazo Compounds; Academic: New York, 1986, pp 326-435.
7. (a) Davies, H. M. L.; Clark, T. J.; Smith, H. D. JOC 1991, 56, 3817. (b) Cantrell, W. R.; Davies, H. M. L. JOC 1991, 56, 723.
8. (a) Davies, H. M. L.; McAfee, M. J.; Oldenburg, C. E. M. JOC 1989, 54, 930. (b) Davies, H. M. L.; Smith, H. D.; Hu, B.; Klenzak, S. M.; Hegner, F. J. JOC 1992, 57, 6900. (c) Davies, H. M. L.; Huby, N. J. S.; Cantrell, W. R.; Olive, J. L. JACS 1993, 115, 9468.
9. (a) Bailey, A. S.; Churn, M. C.; Wedgwood, J. J. TL 1968, 5953. (b) Harmon, R. E.; Wellman, G.; Gupta, S. K. JHC 1972, 9, 1191.
10. Warren, B. K.; Knaus, E. E. JHC 1987, 24, 1413.
11. Beck, W.; Bauder, M. CB 1970, 103, 583.
12. (a) Ashley, J. N.; Buchanan, G. L.; Easson, A. P. T. JCS 1947, 60. (b) Datta, P. K. JIC 1947, 109.
13. Kasukhin, L. F.; Ponomarchuk, M. P.; Kuplennik, Z. I.; Pinchuk, A. M. ZOB 1980, 50, 1032.

Valerij A. Nikolaev

St. Petersburg State University, Russia



Copyright 1995-2000 by John Wiley & Sons, Ltd. All rights reserved.